Skip to main content

On the Principle of Corresponding States for Transport Properties of Simple Dense Fluids

  • Chapter
Thermal Conductivity 15

Abstract

It was observed from experiments that the excess thermal conductivity:

$$\widetilde\lambda = \lambda \left({\rho ,T}\right)\,\,-\lambda\left({{\rm O},T}\right) = \lambda - {\lambda_o}$$
((1))

and the excess viscosity:

$$\widetilde\mu = \mu \left({\rho ,T}\right) - \mu\left({{\rm O},{\rm T}}\right) = \mu - {\mu_o}$$
((2))

of noble gases were temperature independent in a restricted temperature range. By application of the principle of corresponding states to noble gases according to the relation:

$${\widetilde\lambda ^ \star } = \frac{{{\sigma ^2}\,{m^{1/2}}}}{{{\varepsilon ^{1/2}}\,k}}\,\widetilde\lambda $$
((3))
$${\widetilde\mu^\star} =\frac{{{\sigma^2}\,}}{{{{\left({m\varepsilon}\right)}^{1/2}}}}\,\widetilde\mu$$
((4))
$${T^\star} = \frac{{k\,}}{\varepsilon }\,\,T$$
((5))
$${\rho^ \star } = \frac{{{\sigma^3}\,}}{m}\,\,\rho$$
((6))

where σ and ε are the parameters of the Lennard-Jones potential, T the absolute temperature and ρ the density, we consider to what extend μ̃* and λ̃* can be considered as temperature independent. As we will show we get one curve in reduced coordinates for each transport preperty which can be compared to the Enskog theory. The excess viscosity is found to be temperature independent. The excess thermal conductivity is slightly temperature dependent in T*1/6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Neindre B., PhD. Thesis, University of Paris, 1969.

    Google Scholar 

  2. Tufeu R., PhD. Thesis, University of Paris, 1971.

    Google Scholar 

  3. Tufeu R., Le Neindre B. and Bury P., CR Acad. Sc., Paris, 271 (1970), 589.

    CAS  Google Scholar 

  4. Tufeu R., Le Neindre B. and Bury P. CR Acad. Sc. Paris 273 B (1971), 61.

    Google Scholar 

  5. Tufeu R., Le Neindre B. and Bury P., CR Acad. Sc, Paris 273 (1971), 113.

    CAS  Google Scholar 

  6. Michels A., Sengers J.V. and Van der Kleindert L.J.M., Physica 29 (1963), 149.

    Article  CAS  Google Scholar 

  7. Sengers J.V., Bokl W.T. and Stigter C.J., Physica 30 (1964), 1018

    Article  CAS  Google Scholar 

  8. Vermesse J. and Vidal D., CR Acad. Sc. Paris 282 B (1976), 5.

    Google Scholar 

  9. Vermesse J. and Vidal D., CR Acad. Sc. Paris 280 B (1975), 749.

    Google Scholar 

  10. Vermesse J. and Vidal D., CR Acad. Sc. Paris 277 B (1975), 191.

    Google Scholar 

  11. Trappeniers N.J., Botzen A., Van Oosten J. and Van den Berg H.R., Physica 31 (1965), 945.

    Article  CAS  Google Scholar 

  12. Reynes E.G. and Thodos G., Physica 30 (1964), 1529.

    Article  CAS  Google Scholar 

  13. Enskog D., Svensk Akad Handl 4 (1922) 63.

    Google Scholar 

  14. Hirschfelder J.O., Curtiss C.F., Bird R.B., Molecular Theory of Gases and Liquids, Wiley, New-York 2 ed. (1964)

    Google Scholar 

  15. Ikenberry L.D. and Rice S.A., J. Chem. Phys. 39 (1963), 1561.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Purdue Research Foundation

About this chapter

Cite this chapter

Le Neindre, B., Tufeu, R., Garrabos, Y., Vodar, B. (1978). On the Principle of Corresponding States for Transport Properties of Simple Dense Fluids. In: Mirkovich, V.V. (eds) Thermal Conductivity 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9083-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9083-5_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9085-9

  • Online ISBN: 978-1-4615-9083-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics