On the Principle of Corresponding States for Transport Properties of Simple Dense Fluids

  • B. Le Neindre
  • R. Tufeu
  • Y. Garrabos
  • B. Vodar


It was observed from experiments that the excess thermal conductivity:
$$\widetilde\lambda = \lambda \left({\rho ,T}\right)\,\,-\lambda\left({{\rm O},T}\right) = \lambda - {\lambda_o}$$
and the excess viscosity:
$$\widetilde\mu = \mu \left({\rho ,T}\right) - \mu\left({{\rm O},{\rm T}}\right) = \mu - {\mu_o}$$
of noble gases were temperature independent in a restricted temperature range. By application of the principle of corresponding states to noble gases according to the relation:
$${\widetilde\lambda ^ \star } = \frac{{{\sigma ^2}\,{m^{1/2}}}}{{{\varepsilon ^{1/2}}\,k}}\,\widetilde\lambda $$
$${\widetilde\mu^\star} =\frac{{{\sigma^2}\,}}{{{{\left({m\varepsilon}\right)}^{1/2}}}}\,\widetilde\mu$$
$${T^\star} = \frac{{k\,}}{\varepsilon }\,\,T$$
$${\rho^ \star } = \frac{{{\sigma^3}\,}}{m}\,\,\rho$$
where σ and ε are the parameters of the Lennard-Jones potential, T the absolute temperature and ρ the density, we consider to what extend μ̃* and λ̃* can be considered as temperature independent. As we will show we get one curve in reduced coordinates for each transport preperty which can be compared to the Enskog theory. The excess viscosity is found to be temperature independent. The excess thermal conductivity is slightly temperature dependent in T*1/6.


Thermal Conductivity Transport Property Viscosity Coefficient Thermal Conductivity Coefficient Excess Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Le Neindre B., PhD. Thesis, University of Paris, 1969.Google Scholar
  2. 2.
    Tufeu R., PhD. Thesis, University of Paris, 1971.Google Scholar
  3. 3.
    Tufeu R., Le Neindre B. and Bury P., CR Acad. Sc., Paris, 271 (1970), 589.Google Scholar
  4. 4.
    Tufeu R., Le Neindre B. and Bury P. CR Acad. Sc. Paris 273 B (1971), 61.Google Scholar
  5. 5.
    Tufeu R., Le Neindre B. and Bury P., CR Acad. Sc, Paris 273 (1971), 113.Google Scholar
  6. 6.
    Michels A., Sengers J.V. and Van der Kleindert L.J.M., Physica 29 (1963), 149.CrossRefGoogle Scholar
  7. 7.
    Sengers J.V., Bokl W.T. and Stigter C.J., Physica 30 (1964), 1018CrossRefGoogle Scholar
  8. 8.
    Vermesse J. and Vidal D., CR Acad. Sc. Paris 282 B (1976), 5.Google Scholar
  9. 9.
    Vermesse J. and Vidal D., CR Acad. Sc. Paris 280 B (1975), 749.Google Scholar
  10. 10.
    Vermesse J. and Vidal D., CR Acad. Sc. Paris 277 B (1975), 191.Google Scholar
  11. 11.
    Trappeniers N.J., Botzen A., Van Oosten J. and Van den Berg H.R., Physica 31 (1965), 945.CrossRefGoogle Scholar
  12. 12.
    Reynes E.G. and Thodos G., Physica 30 (1964), 1529.CrossRefGoogle Scholar
  13. 13.
    Enskog D., Svensk Akad Handl 4 (1922) 63.Google Scholar
  14. 14.
    Hirschfelder J.O., Curtiss C.F., Bird R.B., Molecular Theory of Gases and Liquids, Wiley, New-York 2 ed. (1964)Google Scholar
  15. 15.
    Ikenberry L.D. and Rice S.A., J. Chem. Phys. 39 (1963), 1561.CrossRefGoogle Scholar

Copyright information

© Purdue Research Foundation 1978

Authors and Affiliations

  • B. Le Neindre
    • 1
  • R. Tufeu
    • 1
  • Y. Garrabos
    • 1
  • B. Vodar
    • 1
  1. 1.LIMHP - CNRSUniversité de Paris NordVilletaneuseFrance

Personalised recommendations