Ex-Reactor Determination of Thermal Gap Conductance between Uranium Dioxide: Zircaloy-4 Interfaces

  • J. E. Gamier
  • S. Begej


A study of thermal gap conductance between UO2 and Zircaloy-4 has been initiated utilizing a unique transient pulse technique: Modified Pulse Design (MPD)—a technique employing a heat pulse (laser) and signal detector to monitor the energy transmitted through UO2-Zircaloy samples both in contact and separated by a gap. Initial experiments have been conducted as a function of temperature (to 873°K), gas composition (He, He:Ar, Ar), and gap width 6.0 × 10-4 and 2.18 × 10-3cm). The thermal gap conductance is dependent upon these variables, and comparison with calculated results using existing models for the temperature jump distance is made. A concept involving direct energy transfer across narrow gaps by individual gas molecules is also considered.


Heat Pulse Uranium Dioxide Nuclear Regulatory Commission Thermal Contact Conductance Thermal Interface Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Light Water Reactor Fuel Behavior Program Project Description— Fuel and Cladding Material Property Requirements; P. MacDonald (ed.), Aerojet Nuclear Company (March 31, 1974).Google Scholar
  2. 2.
    A. C. Rapier, T. M. Jones, and J. E. Mcintosh, “The Thermal Conductance of Uranium Dioxide/Stainless Steel Interfaces,” International Jrn. of Heat and Mass Transfer 6, p. 397 (1963).CrossRefGoogle Scholar
  3. 3.
    R. A. Dean, Thermal Contact Conductance Between UO 2 and Zircaloy-2, CVNA-127 (May 1962).Google Scholar
  4. 4.
    A. M. Ross and R. L. Stoute, Heat Transfer Coefficient Between UO 2 and Zircaloy-2, CRFD-1075: AECL-1552 (1962).Google Scholar
  5. 5.
    W. K. Anderson and G. L. Lechliter, LWB/LSBR Development Program —Some Input Properties for Computer Description of Fuel Properties, KAPL-3300 (June 1967).Google Scholar
  6. 6.
    C. R. Hann, C. E. Beyer, and L. J. Parchen, GAPC0N-THERMAL-1: A Computer Program for Calculating the Gap Conductance in Oxide Fuel Pins, BNWL-1778 (1973).CrossRefGoogle Scholar
  7. 7.
    C. E. Beyer, C. R. Hann, D. D. Lanning, F. E. Panisko, and L. J. Parchen, GAPCON-THERMAL-2: A Computer Program for Calculating the Thermal Behavior of an Oxide Fuel Rod, BNWL-1898 (1975).Google Scholar
  8. 8.
    J. A. Dearien, et al., FRAP-S2: A Computer Code for the Steady-State Analysis of Oxide Fuel Rods, TREE-NUREG-1107.Google Scholar
  9. 9.
    J. Wordsworth, “IAMBUS-1: A Digital Computer Code for the Design, In-pile Performance Prediction and Postirradiation Analysis of Arbitrary Fuel Rods,” Nuclear Science and Engineering, 31, 309 (1974).CrossRefGoogle Scholar
  10. 10.
    W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys., 32, 1679 (1961).CrossRefGoogle Scholar
  11. 11.
    J. A. Cape and G. W. Lehman, J. Appl. Phys., 34, 1909 (1963).CrossRefGoogle Scholar
  12. 12.
    G. Peckman, The Computer Journal, 13 (4) (November 1970).Google Scholar
  13. 13.
    J. L. Bates, High Temperature Thermal Conductivity of ‘Round-Robin’ Uranium Dioxide, BNWL-1431, (July 1970).CrossRefGoogle Scholar
  14. 14.
    D. D. Lanning and C. R. Hann, Review of Methods Applicable to the Calculation of Gap Conductance in Zircaloy-Clad UO 2 Fuel Rods, BNWL-1894, (April 1975).CrossRefGoogle Scholar
  15. 15.
    W. R. Lloyd, D. P. Wilkins, and P. R. Hill, “Heat Transfer in Multi-Component Monatomic Gases in the Low, Intermediate and High Pressure Regime,” (Nuclear Thermionics Conference, 1973).Google Scholar
  16. 16.
    E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill, N.Y., p. 311 (1938).Google Scholar
  17. 17.
    S. K. Loyalka, “Temperature Jump in a Gas Mixture,” Physics Fluids 17, p. 897 (1974).CrossRefGoogle Scholar

Copyright information

© Purdue Research Foundation 1978

Authors and Affiliations

  • J. E. Gamier
    • 1
  • S. Begej
    • 1
  1. 1.Battelle, Pacific Northwest LaboratoriesRichlandUSA

Personalised recommendations