Corrosion of Metals in Organic Solvents



Developments in the chemical and petrochemical industries, advances in chemical engineering, the introduction of new products, advances in the technology of intermediates, and problems in energy conversion have created new corrosion problems, involving the failure of metallic materials under the influence of aggressive organic solvents. Failures of this type lead not only to a deterioration of the mechanical properties of structural material, but also to discoloration and unwanted changes of the solvent. Since organic solvents in most cases are poisonous, inflammable, and, in the presence of air, explosive, the demands on the corrosion resistance of the materials used are immense. Therefore, in discussing corrosion of metals in organic solvents problems arise which have no parallel in the field of corrosion in aqueous media.


Organic Solvent Corrosion Rate Corrosion Product Butyric Acid Stress Corrosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Schwabe, Acid Corrosion of Metals in Nonaqueous Solvents, Verlag Technik, Berlin (1952) [in German].Google Scholar
  2. 2.
    A. Bukowiecki, On the Corrosion Behaviour of Metals in Nonaqueous Liquids, Metall. 13, 536–540 (1959) [in German].Google Scholar
  3. 3.
    W. Schmidt, Corrosion of Metals and Alloys in Organic Media, Zashchita Metal. (Met. Prot.) 5, 608–617 (1969) [in Russian].Google Scholar
  4. 4.
    J. J. Demo, Effect of Low Concentrations of Acid and Water on the Corrosion of Metals in Organic Solvents, Chem. Eng. World 7, 115–124 (1972).Google Scholar
  5. 5.
    E. Heitz and C. M. v. Meysenbug, The Corrosion of Iron, Nickel, Copper, and Aluminum in Organic Solvents with Low Content of Mineralic Acids, Werkst. u. Korr. 16, 178–595 (1965) [in German].Google Scholar
  6. 6.
    E. Heitz, Basic Processes of Metal Corrosion in Organic Solvents I, Werkst. u. Korr. 21, 360–367 (1970) [in German].Google Scholar
  7. 7.
    E. Heitz, M. Huković, and K. H. Maier, Basic Processes of Metal Corrosion in Organic Solvents II, IS. 21, 457–462 (1970) [in German].Google Scholar
  8. 8.
    E. Price, in The Chemistry of Nonaqueous Solvents (J. J. Lagowski, ed.), Vol. I, pp. 67–96, Academic Press, New York (1966).Google Scholar
  9. 9.
    B. Case, in Reactions of Molecules at Electrodes (N. S. Hush, ed.), pp. 45–134, Wiley- Interscience, London (1971).Google Scholar
  10. 10.
    G. N. Lewis, M. Randall, K. S. Pitzer, and L. Brewer, Thermodynamics, McGraw-Hill, New York (1961).Google Scholar
  11. 11.
    A. W. Francis, Liquid-Liquid Equilibriums, Interscience, New York (1963).Google Scholar
  12. 12.
    A. W. Francis, Ternary Systems of Hydrogen Halides-Systems with Island Curves, J. Phys. Chem. 62, 579–584 (1958).Google Scholar
  13. 13.
    L. Alders, Liquid-Liquid Extraction, Elsevier, Amsterdam (1955).Google Scholar
  14. International Critical Tables, McGraw-Hill, New York (1933).Google Scholar
  15. 15.
    Landolt-Börnstein, Data and Functions, 6th ed., Vol. II, Part 2, Springer, Berlin (1962, 1964) [in German].Google Scholar
  16. 16.
    A. W. Francis, Ternary Systems of Chlorine Compounds, J. Chem. Eng. Data 12, 381–386 (1967).Google Scholar
  17. 17.
    A. W. Francis, Ternary Systems Separating into Two Liquid Layers, in Solubilities of Inorganic and Organic Compounds (A. Seidell and W. F. Linke, eds.), Suppl. to 3rd ed., pp. 821–1122, Van Nostrand (1952).Google Scholar
  18. 18.
    N. A. Mikhailova, N. P. Zhuk, A. V. Turkovskaya, Yu. P. Adler, and A. I. Ratner, Corrosion Resistance of Aluminum in the System CH3COOH-HCOOH-H2O, Zashchita Metal. (Met. Prot.) 6, 387–396 (1970) [in Russian].Google Scholar
  19. 19.
    M. Stern and H. H. Uhlig, Corrosion of Aluminum by Carbon Tetrachloride, J. Electrochem. Soc. 99, 381–388 (1952).Google Scholar
  20. 20.
    I. M. Kolthoff, Review of Fundamentals of Polarography in Inert Organic Solvents, J. Polarogr. Soc. 10, 22–36 (1965).Google Scholar
  21. 21.
    K. Schwabe, Polarography in Nonaqueous Solutions, in Progress in Polarography (P. Zuman and I. M. Kolthoff, eds.), Vol. I, pp. 333–355, Interscience, New York (1962) [in German].Google Scholar
  22. 22.
    W. Huber, Titrations in Nonaqueous Solvents, Akad. Verlagsges., Frankfurt (1964) [in German].Google Scholar
  23. 23.
    R. G. Bates, in The Chemistry of Nonaqueous Solvents (J. J. Lagowski, ed.), Vol. I, pp. 97–128, Academic Press, New York (1966).Google Scholar
  24. 24.
    R. G. Bates, Determination of pH, John Wiley, New York (1964).Google Scholar
  25. 25.
    W. A. Pleskov, Electrode Potentials and Solvation Energies of Ions, Adv. Chem. (USSR) 16, 254 (1947) [in Russian].Google Scholar
  26. 26.
    H.-M. Koepp, H. Wendt, and H. Strehlow, Comparison of the Potential Series in Different Solvents, Z. Elektrochem. 64, 483–491 (1960) [in German].Google Scholar
  27. 27.
    E. Heitz, On the Reaction Mechanism of Transition Metals with Nonaqueous Monocarboxylic Acids, Habil. Schrift, University Frankfurt, Frankfurt (1968) [in German].Google Scholar
  28. 28.
    H. Strehlow, in The Chemistry of Nonaqueous Solvents (J. J. Lagowski, ed.), Vol. I, pp. 129–171, Academic Press, New York (1966).Google Scholar
  29. 29.
    C. L. LeBas and M. C. Day, EMF Measurements of the Ethanol-Hydrochloric Acid-Water System, J. Phys. Chem. 64, 465–467 (1960).Google Scholar
  30. 30.
    J. M. Austin, A. H. Hunt, F. A. Johnson, and N. N. Parton in Electrochemical Data (B. E. Conway, ed.), p. 301, Elsevier, Amsterdam (1952).Google Scholar
  31. 31.
    K. Schwabe and S. Ziegenbalg, On the Galvanic Cell: Pt,H2(l atm)/HCl, Hg2Cl2(s)/Hg in Organic Solvents and Their Mixtures with Water, I, Z. Elektrochem. 62, 172–178 (1958) [in German].Google Scholar
  32. 32.
    K. Schwabe and M. Kunz, On the Galvanic Cell: Pt,H2(l atm)/HCl,Hg2Cl2(s)/Hg in Organic Solvents and Their Mixtures with Water, IV, Z. Elektrochem. 64, 1188–1190 (1960) [in German].Google Scholar
  33. 33.
    K. Schwabe and N. F. Nhuan, On the Galvanic Cell: Pt,H2(1 atm)/HCl,Hg2Cl2(s)/Hg in Organic Solvents and Their Mixtures with Water, V, Z. Elektrochem. 65, 891–894 (1961) [in German].Google Scholar
  34. 34.
    H. S. Harned and J. O. Morrison, The Thermodynamics of Hydrochloric Acid in Dioxane-Water Mixtures from EMF Measurements, I. Standard Potentials, J. Am. Chem. Soc. 58, 1908–1911 (1936).Google Scholar
  35. 35.
    H. Kaesche, The Corrosion of Metals, Springer, Berlin (1966) [in German].Google Scholar
  36. 36.
    U. R. Evans, The Corrosion and Oxidation of Metals, Edward Arnold, London (1960); First Suppl. Vol. (1968).Google Scholar
  37. 37.
    K. J. Vetter, Electrochemical Kinetics, Academic Press, New York (1967).Google Scholar
  38. 38.
    L. L. Shreir (ed.), Corrosion, Vols. I, II, George Newnes, London (1963).Google Scholar
  39. 39.
    N. Hackerman, The Anodic Polarisation Behaviour of Metals in Hydrogen Fluorides, Corr. Sci. 1, 39–50 (1967).Google Scholar
  40. 40.
    A. K. Vijh, Correlation between Atomic Number and Electrochemical Behaviour: Anodic Dissolution of Metals in Hydrogen Fluoride, Electrochim. Acta 16, 441–445 (1971).Google Scholar
  41. 41.
    L. G. Gindin, W. A. Kasakowa, and I. N. Putilova, On the Influence of the Solvent on the Acid Corrosion of Metals, Dokl. Akad. Nauk SSSR 80, 777–780 (1951) [in Russian].Google Scholar
  42. 42.
    E. Heitz, On the Mechanism of Reactions of Transition Metals with Nonaqueous Monocarboxylic Acids, Ber. Bunsenges. Phys. Chem. 73, 1085–1093 (1969) [in German].Google Scholar
  43. 43.
    H.-E. Bühler and W. Schwenk, The Influence of Cold Work on the Anodic Dissolution and Cathodic Hydrogen Development during Corrosion of Different Metals and Alloys in Acids, Z. Metallkunde 56, 24–30 (1965) [in German].Google Scholar
  44. 44.
    W. J. Lorenz and G. Eichkorn, Influence of Subgrain Structure on the Mechanism of Anodic Iron Dissolution in Acidic Solutions, Ber. Bunsenges. Phys. Chem. 70, 99–106 (1966) [in German].Google Scholar
  45. 45.
    J. C. Scully (ed.), The Theory of Stress Corrosion Cracking in Alloys, NATO Scientific Affairs Div., Brussels (1971).Google Scholar
  46. 46.
    W. J. Lorenz, H. Yamaoka, and H. Fischer, On the Electrochemical Behavior of Iron in Hydrochloric Acid Solution, Ber. Bunsenges. Phys. Chem. 67, 932–943 (1963) [in German].Google Scholar
  47. 47.
    H. Gatos (ed.), The Surface Chemistry of Metals and Semiconductors, John Wiley, New York (1960).Google Scholar
  48. 48.
    N. Tanaka and R. Tamamushi, Kinetic Parameters of Electrode Reactions, Electrochim. Acta 9, 963–989 (1964).Google Scholar
  49. 49.
    R. M. Latanision and A.R.C. Westwood, in Advances in Corrosion Science and Technology (M. G. Fontana and R. W. Staehle, eds.), Vol. 1, pp. 51–145, Plenum Press, New York (1970).Google Scholar
  50. 50.
    C. P. Dillon, Role of Contaminants in Acetic Acid Corrosion, Mater. Prot. 4, 20–22 (1965).Google Scholar
  51. E. Heitz and E. Constantinescu, On the Influence of Water on the Metal Corrosion in Carboxylic Acids, Corr. Sci. (in preparation).Google Scholar
  52. 52.
    J. O’M. Bockris and H. Kita, Analysis of Galvanostatic Transients and Application to the Iron Electrode Reaction, J. Electrochem. Soc. 108, 676–685 (1961).Google Scholar
  53. 53.
    K. E. Heusler, On the Mechanism of Electrochemical Deposition and Dissolution of Cobalt in Perchlorate Solutions, Z. Elektrochem. 66, 177–184 (1962) [in German].Google Scholar
  54. 54.
    W. J. Lorenz, The Influence of Halogenide Ions on the Anodic Dissolution of Iron, Corr. Sci. 5, 121–131 (1965) [in German].Google Scholar
  55. 55.
    K. Fischbeck, On the Application of the Warburg Apparatus for Corrosion Testing, Werkst. u. Korr. 15, 59–63 (1964) [in German].Google Scholar
  56. K. Fischbeck and W. Friedemann, private communication.Google Scholar
  57. 57.
    A. Bukowiecki, Investigations on the Corrosion Behavior of Aluminum and its Alloys in Organic and Inorganic Bases, Werkst. u. Korr. 10, 91–105 (1959) [in German].Google Scholar
  58. 58.
    K. Brookmann, Investigations on the Corrosion Behavior of Aluminum in Organic Solvents, Aluminium 34 30–35 (1958) [in German].Google Scholar
  59. 59.
    E. G. Haney and W. R. Wearmouth, Effect of “Pure” Methanol on the Cracking of Titanium, Corrosion 25, 87–91 (1969).Google Scholar
  60. 60.
    K. Mori, A. Takamura, and T. Shimose, Stress Corrosion Cracking of Ti and Zr in HCl-Methanol Solutions, Corrosion 22, 29–31 (1966).Google Scholar
  61. 61.
    I. D. Meshcheryakova, T. P. Kashcheva, and M. L. Rutkovskij, Behavior of Titanium in Ethanol Water Solutions of Hydrogen Chloride, Zashchita Metal. (Met. Prot.) 6, 286–289 (1970) [in Russian].Google Scholar
  62. 62.
    V. I. Vigdorovich, L. E. Tzygankova, and R. I. Merkulova, Corrosion Aggressiveness of Acidic Glycerol Solutions, Zashchita Metal. (Met. Prot.) 8, 328–331 (1972) [in Russian].Google Scholar
  63. 63.
    L. E. Tzygankova, V. I. Vigdorovich, and I. T. Pchelnikov, Corrosion and Electrochemical Behavior of Certain Metals in Aqueous Ethylene Glycol Solutions of Sodium Chloride, Zashchita Metal. (Met. Prot.)6, 648–652 (1970) [in Russian]Google Scholar
  64. 63.A
    V. I. Vigdorovich, I. T. Pchelnikov, and L. E. Tzygankova, Copper and Brass Corrosion in Acidic Ethyleneglycol Solutions, Zashchita Metal. (Met. Prot.) 8, 464–466 (1972) [in Russian].Google Scholar
  65. 64.
    L. E. Tzygankova, V. I. Vigdorovich, and N. V. Fillippova, Steel Corrosion in Ethanol Solutions of Hydrogen Chloride, Zashchita Metal. (Met. Prot.) 9, 321–323 (1973) [in Russian].Google Scholar
  66. 65.
    M. Allbutt and G. Tolley, The Dissolution of Metals in Dioxan-Water Solutions of Hydrochloric Acid, J. Appl. Chem. 11, 52–68 (1961).Google Scholar
  67. 66.
    J. J. Demo, Effect of Inorganic Contaminants on the Corrosion of Metals in Chlorinated Solvents, Corrosion 24, 139–149 (1968).Google Scholar
  68. 67.
    R. Bartoniĉek, Steel Corrosion in a Benzene Solution of Hydrochloric Acid, Coll. Czech. Chem. Commun. 30, 1747–1758 (1965) [in German].Google Scholar
  69. 68.
    V. H. Chistyakov and W. W. Shapurova, Corrosion of Steel in Chloroform and Dichloroethane, Isv. Vyssh. Uch. Zav., Khim. i Khim. Tekhnol. 7, 349–350 (1964) [in Russian].Google Scholar
  70. 69.
    A. Bukowiecki, Testing of Halogenated Hydrocarbons with Respect to Their Metal Attacking Properties, Schweizer Archiv 34, 363–366 (1968) [in German].Google Scholar
  71. 70.
    E. Heitz, On the Influence of Flow Rate on Corrosion in Liquid Media, in Proc. Steel Congr. pp. 731–747, Luxemburg (1968).Google Scholar
  72. 71.
    E. Heitz, Investigation of Transport Processes at Corrosion, Werkst. u. Korr. 15, 63–69 (1964) [in German].Google Scholar
  73. 72.
    E. Heitz and C. Loss, On the Mechanism of Erosion Corrosion in Liquid Media of High Flow Rate, in Proc. 5th Int. Congr. Metallic Corrosion, Tokyo (1972); Werkst. u. Korr. 24, 38–48 (1973) [in German].Google Scholar
  74. 73.
    H. Wiegand and H. Piltz, On the Relation between Cavitation and Corrosion, Werkst. u. Korr. 15, 212–220 (1964) [in German].Google Scholar
  75. 74.
    E. Heitz, Kinetic Investigations on the Corrosion of Nickel in Acidic Alcohol Solutions, Electrochim. Acta 10, 49–65 (1965) [in German].Google Scholar
  76. 75.
    E. Yeager, The Measurement of Polarisation, Tech. Rep. U.S. Office Naval Research, Pr. Nr. 359–277 (1960).Google Scholar
  77. 76.
    J. E. Draley, F. E. DeBoer, and C. A. Youngdahl, The Polarisation of Metals in Boiling, Distilled Water, J. Electrochem. Soc. 108, 622–628 (1961).Google Scholar
  78. 77.
    W. J. Schwerdtfeger, Current and Potential Relations for the Cathodic Protection of Steel in High Resistivity Environment, Corrosion 16, 209t–214t (1960).Google Scholar
  79. 78.
    D. A. Jones, Polarisation in High Resistivity Media, Corr. Sci. 8, 19–27 (1968).Google Scholar
  80. 79.
    E. Heitz, Measurement of the Corrosion Rate in Media of Low Conductivity, in Proc. EUROMESCOR Congr., Vol. I, Prag (1968) [in German].Google Scholar
  81. 80.
    K. Schwabe and W. Schmidt, Influence of Water on the Passivation of Nickel in Sulfuric Acid Solution, Corr. Sci. 10, 143–155 (1970)Google Scholar
  82. 80.A
    M. Jähnchen, On the Anodic Behavior of Iron in Dimethyl Formamide and Dimethyl Sulfoxide with Sulfuric Acid and Changing Amounts of Water, Dissertation, TU Dresden (1972) [in German].Google Scholar
  83. 81.
    F. Mazza, Anodic Behavior and Corrosion of Titanium in Methanolic Solutions, Werkst. u. Korr. 20, 199–205 (1969) [in German].Google Scholar
  84. 82.
    A. I. Cinman, W. S. Kusub, and A. N. Katrevich, Influence of Water and of the Nature of the Electrolyte on the Anodic Activation of Titanium in Methanol Solutions, Electrochimiya 2, 557–562 (1966) [in Russian].Google Scholar
  85. 83.
    H. Böhni, Pitting Corrosion of Metallic Materials, Material u. Technik 1, 33–43 (1973) [in German].Google Scholar
  86. 84.
    F. Mansfeld, The Effect of Water on Passivity and Pitting of Titanium in Solutions of Methanol and Hydrogen Chloride, J. Electrochem. Soc. 118, 1412–1415 (1971).Google Scholar
  87. 85.
    K. Elayaperumal, P. K. De, and J. Balachandra, Stress Corrosion Cracking of Zirconium in CH3OH + HCL Solutions, Corr. Sci. 11, 579–589 (1971).Google Scholar
  88. 86.
    J. C. Cessna, Polarisation Admittance Study of Lithium Corrosion in Propylene Carbonate Solutions, Corrosion 27, 244–254 (1971).Google Scholar
  89. 87.
    L. B. Parsons, The Influence of Water on Certain Chemical Reactions, III. The Reactions between Certain Metals and Iodine, J. Am. Chem. Soc. 47, 1830–1835 (1925).Google Scholar
  90. 88.
    J. D. Minford, M. H. Brown, and R. H. Brown, Reaction of Aluminum and Carbon Tetrachloride, I, J. Electrochem. Soc. 106, 185–191 (1959).Google Scholar
  91. 89.
    R. H. Brown, E. H. Cook, M. H. Brown, and J. D. Minford, Reaction of Aluminum and Carbon Tetrachloride. II, J. Electrochem. Soc. 106, 192–199 (1959).Google Scholar
  92. 90.
    V. M. Chistyakov and S. A. Balezin, Mechanism of the Corrosion of Steel in Carbon Tetrachloride, Isv. Vyssh. Uch. Zav., Khim. i Khim. Tekhnol. 4, 955–961 (1961) [in Russian].Google Scholar
  93. 91.
    V. H. Chistyakov, Kinetics of Corrosion of Steel in Some Chlorinated Hydrocarbons, Zh. Prikl. Khim. 38, 1021–1026 (1965) [in Russian].Google Scholar
  94. 92.
    M. Salomon, Kinetics of Electrode Reactions, J. Electrochem. Soc. 113, 940–943 (1966).Google Scholar
  95. 93.
    E. Heitz, The Mechanism of Metallic Corrosion In Nonaqueous Monocarboxylic Acids, in Proc. 4th Int. Congr. Met. Corr., p. 533–536, Amsterdam (1969).Google Scholar
  96. 94.
    H. Göhr and A. Seiler, Galvanostatic Investigations into the System Ether-Grignard Reagent, Chem. Ing. Techn. 42, 196–199 (1970) [in German].Google Scholar
  97. 95.
    R. R. Dewald and O. H. Bezirjian, A Kinetic Study of the Reactions of Water with Sodium and Cesium in Methylamine, J. Phys. Chem. 74, 4155–4157 (1970).Google Scholar
  98. 96.
    J. R. Anderson and B. H. McConkey, Reactions of Methyl Chloride and of Methylene Chloride at Metal Surfaces-I. Reactions at a Sodium Surface, J. Catalysis 9, 263–277 (1967).Google Scholar
  99. 97.
    P. Neufeld and A. K. Chakrabarty, The Corrosion of Aluminum and Its Alloys in Anhydrous Phenol, Corr. Sci. 12, 517–525 (1972).Google Scholar
  100. 98.
    H. Gerischer and I. Wallem-Mattes, On the Mechanism of Dissolution of Gallium Arsenide by Oxydants, Z. Phys. Chem. NF 64 187–198 (1969) [in German].Google Scholar
  101. 99.
    D. Posadas, J. J. Podestá, and A. J. Arvia, Electrochemistry of Solvated Proton in Dimethylsulfoxide, II. Kinetics and Mechanisms of the Electrolytic Evolution of Hydrogen on Iron, Electrochim. Acta 15, 1225–1232 (1970).Google Scholar
  102. 100.
    D. Posadas, A. J. Arvia, and J. J. Podestá, Kinetics and Mechanism of the Iron Electrode in Solutions of HCl in Dimethylsulfoxide, Electrochim. Acta 16, 1025–1039 (1971).Google Scholar
  103. 101.
    D. Posadas, A. J. Arvia, and J. J. Podestá, The Passivation of Iron in Solutions of Hydrogen Chloride in Dimethylsulfoxide, Electrochim. Acta 16, 1041–1053 (1971).Google Scholar
  104. 102.
    A. I. Cinman and A. N. Katrevich, Corrosion of Steel in Dimethylformamide-Water Mixtures, Zashchita Metal. (Met. Prot.) 5, 517–523 (1969) [in Russian].Google Scholar
  105. 103.
    V. N. Dolinkin, G. V. Mikhailova, and L. A. Kuznetsova, Stability and Corrosive Activity of Dimethylformamide and Its Aqueous Solutions, Khim. Prom. 43, 359–360 (1967) [in Russian].Google Scholar
  106. 104.
    J. R. Aylward and E. M. Whitener, Dissolution of Zirconium in HCl-Methanol, J. Electrochem. Soc. 109, 87–91 (1962).Google Scholar
  107. 105.
    T. C. Franklin and C. R. Parsons, The Anodic Dissolution of Nickel in Acetonitrile, J. Electrochem. Soc. 109, 641–642 (1962).Google Scholar
  108. 106.
    H. H. Uhlig and R. Krutenat, Formation of Dissolved Atomic Hydrogen by Electrochemical Polarisation, J. Electrochem. Soc. 111, 1303–1306 (1964).Google Scholar
  109. 107.
    A. J. Johnson and L. L. Shreir, The Anodic Behaviour of U, Ti, Zr, Nb, and Ta in 3 M AlCl3-Diethyl Ether Solution, Corr. Sci. 5, 269–278 (1965).Google Scholar
  110. 108.
    A. R. Piggot, H. Leckie, and L. L. Shreir, Anodic Polarisation of Ti in Formic Acid, I. Anodic Behaviour of Ti in Relation to Anodizing Conditions, Corr. Sci. 5, 165–184 (1965).Google Scholar
  111. 109.
    Ya. M. Kolotyrkin and G. G. Kossyi, Influence of Water on Anodic Behavior of Cr in Methanolic Solutions of HCl, Zashchita Metal. 1, 272–276 (1965) [in Russian].Google Scholar
  112. 110.
    R. G. Keil and R. E. Salomon, Anodization of Vanadium in Acetic Acid Solutions, J. Electrochem. Soc. 115, 628–633 (1968).Google Scholar
  113. 111.
    M. Salomon, Medium Effects on the Rate of Hydrogen Evolution, J. Phys. Chem. 70, 3853–3856 (1966).Google Scholar
  114. 112.
    J. Bardolle and J.-P. Kauffman, Kinetic Investigations of Corrosion Phenomena during Reaction of Iron with Iodine in Different Organic Solvents, Compt. Rend. 266, 1598–1601 (1968) [in French].Google Scholar
  115. 113.
    J.-P. Kauffman and M. G. Chaudron, Investigations on the Influence of the Solvents on the Mode of Attack on Iron by Iodine in Different Organic Solvents, Compt. Rend. 266, 1272–1274 (1968) [in French].Google Scholar
  116. 114.
    T. R. Das, K. A. Venkatachalam, and P. S. Mene, Studies of Corrosion of Metals by Iodine and Ammonia in a Nonaqueous Solvent, Indian J. Appl. Chem. 27, 140–145 (1964).Google Scholar
  117. 115.
    D. Bauer and J. P. Beck, Electrochemistry of Oxygen and Its Reduction Products in Solvents and Molten Salts, J. Electroanalyt. Chem. 40, 233–254 (1972) [in French].Google Scholar
  118. 116.
    W. Jaenicke and P. H. Schweitzer, Exchange Currents of the Zn2 + /Zn(Hg) Electrode in Binary Mixtures of Water and Organic Solvents, Z. Phys. Chem. NF 52, 104–122 (1967) [in German].Google Scholar
  119. 117.
    M. H. Miles and H. Genscher, The Zn2 + /Zn(Hg) Electrode Reaction in Binary Mixtures of Water and n-Propanol, J. Electrochem. Soc. 118, 837–841 (1971).Google Scholar
  120. 118.
    H. Schneider and H. Strehlow, On the Selective Solvation of Ions in Mixtures of Solvents, III, Ber. Bunsenges. Phys. Chem. 69, 674–676 (1965) [in German].Google Scholar
  121. 119.
    F. Mansfeld, Passivity and Pitting of Al, Ni, Ti, and Stainless Steel in CH3OH + H2SO4, J. Electrochem. Soc. 120, 188–192 (1973).Google Scholar
  122. 120.
    R. W. Staehle, A. J. Forty, and D. van Rooyen (eds.), Fundamental Aspects of Stress Corrosion Cracking, NACE, Houston (1969).Google Scholar
  123. 121.
    M. O. Speidel and M. V. Hyatt, in Advances in Corrosion Science and Technology (M. G. Fontana and R. W. Staehle, eds.), Vol. 2. pp. 115–335, Plenum Press, New York (1972).Google Scholar
  124. 122.
    F. E. Watkinson and J. C. Scully, The Stress Corrosion Cracking of a High Purity Al-6Zn-3Mg Alloy, Corr. Sci. 12, 905–924 (1972).Google Scholar
  125. 123.
    S. W. Vorster, Corrosion of Al Alloys in CH3OH + CCl4, Corr. Sci. 9, 801–811 (1969).Google Scholar
  126. 124.
    E. Schmidt, H. Bieri, and K. Huber, On the Formation of Hydrides during Anodic Dissolution of Tantalum in Methanol, Corr. Sci. 5, 455–457 (1965) [in German].Google Scholar
  127. 125.
    I. A. Menzies and A. F. Averill, The Anodic Behaviour of Titanium in HCl-Methanol Solutions, Electrochim. Acta 13, 807–824 (1968).Google Scholar
  128. 126.
    J. R. Ambrose and J. Krüger, The Stress-Corrosion of Ti and Ti-8Al-1Mo-1V in Methanol Vapour, Corr. Sci. 8, 119–124 (1968).Google Scholar
  129. 127.
    B. F. Brown, C. T. Fujii, and E. P. Dahlberg, Methods for Studying the Solution Chemistry within Stress Corrosion Cracks, J. Electrochem. Soc. 116, 218–219 (1969).Google Scholar
  130. 128.
    J. R. Leith, J. W. Hightower, and G. G. Harkins, Stress Corrosion Cracking of Titanium: Some Surface Chemical Reactions in Methanol and Carbon Tetrachloride, Corrosion 26, 377–380 (1970).Google Scholar
  131. 129.
    J. C. Scully and D. T. Powell, The Stress Corrosion Cracking Mechanism of α-Titanium Alloys at Room Temperature, Corr. Sci. 10, 719–733 (1970).Google Scholar
  132. 130.
    J. Spurrier and J. C. Scully, Fractographic Aspects of the Stress Corrosion Cracking of Titanium in a Methanol-HCl Mixture, Corrosion 28, 453–463 (1972).Google Scholar
  133. 131.
    C. M. Chen, F. H. Beck, and M. G. Fontana, Stress Corrosion Cracking of Ti-8Al-1Mo-IV Alloy in Aqueous and Methanol Environment, Corrosion 27, 77–83 (1971).Google Scholar
  134. 132.
    C. M. Chen, F. H. Beck, and M. G. Fontana, Crevice Effect during Polarization of Ti-8Al-1Mo-1V Alloy in Aqueous and Methanol Environments, Corrosion 27, 234–238 (1971).Google Scholar
  135. 133.
    G. Sandoz, Stress Corrosion Cracking Susceptibility of a Titanium Alloy in a Non-electrolyte, Nature 214, 166–167 (1967).Google Scholar
  136. 134.
    L. Raymond and R. Y. Usell, Flaw Growth in Ti-6Al-4V in Freon Environments, Corrosion 25, 251–259 (1969).Google Scholar
  137. 135.
    E. P. Parry and D. H. Hern, Effect of Chloride on the Anodic Dissolution of Titanium in Methanolic Solutions, J. Electrochem. Soc. 119, 1141–1147 (1972).Google Scholar
  138. 136.
    F. H. Cooks, J. F. Russo, and S. A. Brummer, The Separation of Corrosion and Stress Effects in Stress Corrosion: Ti-Al-4V in Bromine-Methanol Solutions, Corrosion 24, 206–208 (1968).Google Scholar
  139. 137.
    Linda H. Lee, Corrosion of Copper in Fluorochemical Liquid Coolants, Corrosion 26, 529–532 (1970).Google Scholar
  140. 138.
    J. Llopis, L. Arizmendi, J. M. Gamboa, V. Martinez-Vilche, and P. Perez-Fernandez, Surface Reaction of Iron with Solutions of Phosphorous Organic Compounds, Corr. Sci. 5, 319–325 (1965).Google Scholar
  141. 139.
    C. Husen, in High-Temperature Metallic Corrosion of Sulfur and its Compounds (Z. A. Foroulis, ed.), pp. 187–207, Electrochem. Society, New York (1970).Google Scholar
  142. 140.
    A. S. Couper, High Temperature Mercaptan Corrosion of Steels, Corrosion, 396t–401t (1963).Google Scholar
  143. W. Deuchler, private communication.Google Scholar
  144. H. Gräfen, H. Münster private communication.Google Scholar
  145. 143.
    K. Risch, private communication; K. Risch, Experiences with Titanium Construction in Chemical Plants, Chem. Ing. Techn. 39, 385–390 (1967) [in German].Google Scholar
  146. 144.
    M.-E. Horn, private communication.Google Scholar
  147. 145.
    E. Rabald, private communication.Google Scholar
  148. 146.
    E. Heitz, unpublished results.Google Scholar
  149. 147.
    E. Rabald, H. Bretschneider, D. Behrens (eds.), Dechema-Werkstofftabelle Frankfurt (1953–1973) [in German].Google Scholar
  150. 148.
    E. Rabald, Alloyed Cast Iron in Chemical Plant Construction, Werkst. u. Korr. 7, 435–448 (1956) [in German]Google Scholar
  151. 148.A
    R. J. Agnew, J. K. Truitt, and W. D. Robertson, Corrosion of Metals in Ethylene Glycol Solutions, Ind. Eng. Chem. 50, 649–656 (1958).Google Scholar
  152. 149.
    E. H. Cook, R. L. Horst, and W. W. Binger, Corrosion Studies of Aluminum in Chemical Process Operations, Corrosion 17, 25t–30t (1961).Google Scholar
  153. 150.
    H. O. Teeple, Corrosion by Some Organic Acids and Related Compounds, Corrosion 8, 14–28 (1952).Google Scholar
  154. 151.
    S. M. Gurevich, I. Kornilov, E. Zotova, V. Blachyk, and Y. Maximov, Investigations into the Corrosion Resistance of Ti Alloys of the Systems Ti-V-O and Ti-V-Al-O, Zashchita Metal. (Met. Prot.) 7, 159–160 (1971) [in Russian].Google Scholar
  155. NACE Techn. Com. Rep., Corrosion by Acetic Acid, Corrosion 13, 757t-766t (1957).Google Scholar
  156. 153.
    H. Togano and K. Osato, Corrosion Test on the Construction Materials for Acetic Acid Synthesis from Methanol and Carbon Monoxide, Corrosion Engineering 10, 529–533 (1961) [in Japanese; cited from Corrosion Abstracts].Google Scholar
  157. 154.
    M. E. Straumanis and P. C. Chen, The Corrosion Behavior of Titanium, Metall. 7, 85–93 (1953) [in German].Google Scholar
  158. 155.
    A. A. Farkhadov, V. G. Asatryan, N. P. Abalyan, A. I. Belayev, and G. A. Orlovskaya, Corrosion of Copper and Stainless Steel in Aqueous Mixtures of Ethylacetate with Acetic Acid, Zashchita Metal. 4, 319–321 (1968) [in Russian].Google Scholar
  159. 156.
    V. G. Asatryan, A. A. Farkhadov, G. A. Orlovskaya, and A. M. Balayan, Investigation of the Corrosion of a Rectification Column for Acetic Acid during Vinyl Acetate Production, Zashchita Metal. 7, 304–309 (1971) [in Russian].Google Scholar
  160. 157.
    R. E. Metsik and E. I. Rokhumyagi, Investigation of Metal Corrosion during Production of Benzoic Acid by Oxidation of Toluene in Acetic Acid Solution, Zashchita Metal. 5, 445–447 (1969) [in Russian].Google Scholar
  161. 158.
    E. Rabald, Corrosion Guide, 2nd ed., Elsevier, Amsterdam (1968).Google Scholar
  162. 159.
    J. R. Lane, L. B. Golden, and W. L. Acherman, Corrosion Resistance of Titanium, Zirconium, and Stainless Steel in Organic Compounds, Ind. Eng. Chem. 5, 1067–1070 (1953).Google Scholar
  163. 160.
    J. Demiancok and J. Dimitrova, Corrosion Properties of Trichloroacetic Acid and Sodium Trichloroacetate, Chem. Prumysl. 18, 263–265 (1968) [in Slovenian].Google Scholar
  164. 161.
    H. Leyerzapf, private communication.Google Scholar
  165. 162.
    V. N. Dolinkin, G. V. Mikhaylova, and L. A. Kuznetsova, Stability and Corrosivity of Dimethylformamide and Its Aqueous Solutions, Khim. Prom. 5, 359–360 (1967) [in Russian].Google Scholar
  166. 163.
    B. G. Gasanov, and N. G. Klyuchnikov, Effect of Ethanolamine on Certain Ferrous and Nonferrous Metals, Uch. Zap. Mosk. Gos. Pedagog. Inst. im V. I. Lenina, 146, 170–175 (1960)Google Scholar
  167. 163a.
    B. G. Gasanov, and N. G. Klyuchnikov[in Russian; cited from Chem. Abstr. 56, 3218i (1962)].Google Scholar
  168. 164.
    S. C. Sircar and D. R. Wiles, Kinetics of the Dissolution of Copper in Aqueous Solutions of Aliphatic Diamines, J. Electrochem. Soc. 107, 366–370 (1960).Google Scholar
  169. 165.
    M. M. Levkovich, V. D. Mezhov, N. P. Matsota, and A. P. Seitskij, Corrosive Action of Monoethanol Amine Solution, Chem. Prom. 42, 832–835 (1966) [in Russian].Google Scholar
  170. 166.
    Dechema-Erfahrungsaustausch, Werkst. u. Korr. 5, 419 (1954).Google Scholar
  171. 167.
    NACE, Corrosion Data Survey, Houston (1967).Google Scholar
  172. 168.
    V. M. Chistiakov and S. A. Balezin, Corrosion and Corrosion Inhibition of Carbon Steel in Carbon Tetrachloride, Tr. Vses. Mezhvaz. Nauchn. Kinf. po Vopr. Bor’ by s Korroziei, 345–352 (1962) [in Russian].Google Scholar
  173. 169.
    E. V. Cherevkova, Corrosion of Iron in Benzene Solutions of Butyric Acid, Zashchita Korroziei, 345–352 (1962) [in Russian].Google Scholar
  174. 170.
    R. Bartoniĉek, Materials Selection for the Mixture H2O/Hydrocarbon/HCl, Chem. Prmysl. 14, 515–520 (1964) [in Czech].Google Scholar
  175. 171.
    W. A. Derungs, Naphthenic Acid Corrosion: An Old Enemy of the Petroleum Industry, Corrosion 12, 617t–622t (1956).Google Scholar
  176. 172.
    R. W. Staehle, in The Theory of Stress Corrosion Cracking in Alloys (J. C. Scully, ed.), p. 225, NATO, Brussels (1971).Google Scholar
  177. 173.
    E.-M. Horn and T. Günther, Failures by Selective Corrosion of Stainless Steels, Chem. Ing. Techn. 41, 991–999 (1969);Google Scholar
  178. 173a.
    T. Günther, Failures of Chemical Apparatus and Consequences for New Design, Chem. Ing. Techn. 42, 774–780 (1970) [in German].Google Scholar
  179. 174.
    L. L. Faingold, Corrosion of Carbon Steel in Electrolyte-Air and Electrolyte-Benzene Systems, Zashchita Metal. 6, 44–46 (1970) [in Russian].Google Scholar
  180. 175.
    I. L. Rozenfeld, K. A. Zhigalova, and V. N. Sadakova, Mechanism of Metal Corrosion in the Two-Phase System Electrolyte-Hydrocarbon, Dokl. Akad. Nauk SSSR 196, 1379–1382 (1971) [in Russian].Google Scholar
  181. 176.
    H. Kaesche, E. Längle, and J. Rückert, Electrochemical Investigations on Fuel Oil Soluble Inhibitors, Werkst. u. Korr. 22, 673–682 (1971) [in German].Google Scholar
  182. 177.
    E. P. Sidroin, S. A. Balezin, and I. V. Nikalskij, Embrittlement and Hydrogen Uptake of Steel in Formic Acid, Zashchita Metal. 7, 69–70 (1971) [in Russian].Google Scholar
  183. 178.
    Materials Selector, Mater. Eng. 74 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  1. 1.Dechema-InstitutFrankfurtGerman Federal Republic

Personalised recommendations