Advertisement

Opiate Receptors and Endogenous Opioid Peptides in Tolerance and Dependence

  • Hans W. Kosterlitz
  • John Hughes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 85B)

Abstract

The impact of the discovery of the endogenous opioid peptides, the enkephalins and endorphins, on our concepts of the mechanisms of tolerance to, and dependence on, opiates is discussed. After a brief survey of the chemistry of the opioid peptides, the possibility of an interaction between opiates and the peptides is considered and a hypothesis formulated. Experimental proof is presented as far as it has become available. The possible mechanisms involved in the development of tolerance and dependence for alcohol, barbiturates and opiates are compared briefly.

Keywords

Opioid Peptide Opiate Receptor Potency Ratio Endogenous Opioid Peptide Antagonist Naloxone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akil, H., Mayer, D. J., and Liebeskind, J. C. Comparison chez le rat entre l’analgésie induite par stimulation de la substance grise péri-aqueducale et l’analgésie morphinique. C.r. hebd. séanc. Acad. Sci., Paris, 274:3603–3605, 1972.Google Scholar
  2. Bläsig, J., and Herz, A. Tolerance and dependence induced by morphine-like pituitary peptides in rats. Eur. J. Pharmac, 294:297–300, 1976.Google Scholar
  3. Bradbury, A. F., Smyth, D. G., Snell, C. R., Birdsall, N. J. M., and Hulme, E. C. C fragment of lipotropin has a high affinity for brain opiate receptors. Nature, Lond., 260: 793–795, 1976.CrossRefGoogle Scholar
  4. Brandt, M., Fischer, K., Moroder, L., Wünsch, E., and Hamprecht, B. Enkephalin evokes biochemical correlates of opiate tolerance and dependence in neuroblastoma x glioma hybrid cells. FEBS Letters, 68:38–40, 1976.CrossRefGoogle Scholar
  5. Brandt, M., Gullis, R. J., Fischer, K., Buchen, C., Hamprecht, B., Moroder, L., and Wünsch, E. Enkephalin regulates the levels of cyclic nucleotides in neuroblastoma × glioma hybrid cells. Nature, Lond., 262:311–313, 1976.CrossRefGoogle Scholar
  6. Cox, B. M., Goldstein, A., and Li, C. H. Opioid activity of a peptide, β-lipotropin-(61–91), derived from β-lipotropin. Proc. natn. Acad. Sci., U.S.A., 73:1821–1823, 1976.CrossRefGoogle Scholar
  7. El-Sobky, A., Dostrovsky, J. O., and Wall, P. D. Lack of effect of naloxone on pain perception in humans. Nature, Lond., 263:783–784, 1976.CrossRefGoogle Scholar
  8. Goldstein, A., and Schulz, R. Morphine-tolerant longitudinal muscle strip from guinea-pig ileum. Br. J. Pharmac., 48:655–666, 1973.CrossRefGoogle Scholar
  9. Guillemin, R., Ling, N., and Burgus, R. Endorphines, peptides d’origine hypothaiamique et neurohypophysaire à activité morphinomimétique. Isolement et structure moléculaire d’α-endorphine. C.r. hebd. Seanc. Acad. Sci. Paris, Ser. D, 282:783–785, 1976.Google Scholar
  10. Hambrook, J. M., Morgan, B. A., Rance, M. J., and Smith, C. F. C. Mode of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature, Lond., 262:782–783, 1976.CrossRefGoogle Scholar
  11. Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, Lond., 258:577–579, 1975.CrossRefGoogle Scholar
  12. Jacob, J. J., and Michaud, G. M. Production par la naloxone d’effets inverses de ceux de la morphine chez le chien éveillé. Archs. inter. Pharmacodyn. Thér., 222:332–340, 1976.Google Scholar
  13. Jacob, J. J., Tremblay, E. C., and Colombel, M.-C. Facilitation de reactions nociceptives par la naloxone chez la souris et chez le rat. Psychopharmacologia, 37:217–223, 1974.CrossRefGoogle Scholar
  14. Klee, W. A., and Nirenberg, A. A neuroblastoma x glioma hybrid cell line with morphine receptors. Proc. natn. Acad. Sci., U.S.A., 71:3474–3477, 1974.CrossRefGoogle Scholar
  15. Klee, W. A., and Streaty, R. Narcotic receptor sites in morphinedependent rats. Nature, Lond., 248:61–63, 1974.CrossRefGoogle Scholar
  16. Kosterlitz, H. W., and Hughes, J. Some thoughts on the significance of enkephalin, the endogenous ligand. Life Sci., 17: 91–96, 1975.CrossRefGoogle Scholar
  17. Kosterlitz, H. W., and Hughes, J. Peptides with morphine-like action in the brain. Br. J. Psychiat., 130:in press, 1977.Google Scholar
  18. Lampert, A., Nirenberg, M., and Klee, W. A. Tolerance and dependence evoked by an endogenous opiate peptide. Proc. natn. Acad. Sci., U.S.A., 73: 3165–3167, 1976.CrossRefGoogle Scholar
  19. Mayer, D. J., Price, D. D., and Raffi, A. Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res., in press, 1977.Google Scholar
  20. Pert, C. B., Pert, A., Chang, J.-K., and Fong, B. T. W. {D-Ala2}-met-enkephalin amide: a potent, long-lasting synthetic pentapeptide analgesic. Science, N.Y., 194:330–332, 1976.CrossRefGoogle Scholar
  21. Sharma, S. K., Klee, W. A., and Nirenberg, M. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc. natn. Acad. Sci., U.S.A., 72:3092–3096, 1975.CrossRefGoogle Scholar
  22. Shuster, L. Tolerance and physical dependence. In D. H. Clouet (Ed.) Narcotic Drugs. Biochemical Pharmacology, pp. 408–423. New York, Plenum Press, 1971.Google Scholar
  23. Simantov, R., Snowman, A. M., and Snyder, S. H. A morphine-like factor ‘enkephalin’ in rat brain: subcellular location. Brain Res., 107:650–657, 1976.CrossRefGoogle Scholar
  24. Simantov, R., and Snyder, S. H. Elevated levels of enkephalin in morphine-dependent rats. Nature, Lond., 262:505–507, 1976.CrossRefGoogle Scholar
  25. Smith, T. W., Hughes, J., Kosterlitz, H. W., and Sosa, R. P. Enkephalins: isolation, distribution and function. In Opiates and Endogenous Opioid Peptides, ed. Kosterlitz, H. W., pp. 57–62. Amsterdam, North-Holland Publishing Co., 1976.Google Scholar
  26. Traber, J., Fischer, K., Latzin, S., and Hamprecht, B. Morphine antagonizes the action of prostaglandin in neuroblastoma cells but not of prostaglandin and noradrenaline in glioma and glioma x fibroblast hybrid cells. FEBS Letters, 49:260–263, 1974.CrossRefGoogle Scholar
  27. Waterfield, A. A., Hughes, J., and Kosterlitz, H. W. Cross tolerance between morphine and methionine-enkephalin. Nature, Lond., 260:624–625, 1976.CrossRefGoogle Scholar
  28. Waterfield, A. A., and Kosterlitz, H. W. Stereospecific increase by narcotic antagonists of evoked acetylcholine output in guinea-pig ileum. Life Sci., 16:1787–1792, 1975.CrossRefGoogle Scholar
  29. Wei, E., and Loh, H. Chronic, intracerebral infusion of morphine and peptides with osmotic minipumps, and the development of physical dependence. In Opiates and Endogenous Opioid Peptides, ed. Kosterlitz, H. W., pp. 303–310. Amsterdam, North-Holland Publishing Co., 1976.Google Scholar
  30. Zieglgänsberger, W., Fry, J. P., Herz, A., Moroder, L., and Wünsch, E. Enkephalin-induced inhibition of cortical neurones and the lack of this effect in morphine tolerant/dependent rats. Brain Res., 115:160–164, 1976.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Hans W. Kosterlitz
    • 1
  • John Hughes
    • 1
  1. 1.Unit for Research on Addictive DrugsUniversity of AberdeenAberdeenScotland

Personalised recommendations