Chemoreception and Transduction on Neuronal Models

  • N. Chalazonitis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 78)


Experiments on Aplysianeuronal models during pO2, CO2and pH transients lead to results useful in understanding some functional mechanisms which may, in some instances, be transposed on chemo-reeeptor nerve terminals of the arterial chemoreceptor ganglia of mammals.


Neuronal Model Carotid Body Ionic Pump Arterial Chemoreceptor Aplysia Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Chalazonitis N: Chemopotentiels des neurones géants fonctionnellement différenciés. Arch. Sci. physiol. 13: 41–78, 1959.Google Scholar
  2. (2).
    Chalazonitis N: Chemopotentials on giant nerve cells (Aplysia fasciata). In Florey E (Editor): Nervous Inhibition. New-York, Pergamon Press, 1961, pp 178–193.Google Scholar
  3. (3).
    Chalazonitis N: Effects of changes in pCO2and pCO2on rhythmic potentials from giant neurons. Ann. N. Y. Acad. Sci. 109: 451–479, 1963.PubMedCrossRefGoogle Scholar
  4. (4).
    Chalazonitis N, Sugaya E: Stimulation-inhibition de neurones géants identifiables d’Aplysia par l’anhydride carbonique. C. R. Acad. Sci. 247: 1657–1659, 1958.Google Scholar
  5. (5).
    Chalazonitis N, Romey G: Excitabilité directe et conductance de la membrane somatique en fonction de la pression partielle de Panhydride carbonique (neurone d’Aplysia). C. R. Soc. Biol. 158: 2367–2372, 1964.Google Scholar
  6. (6).
    Chalazonitis N, Gola M: Enregistrements simultanés de la pCO2intracellulaire et de l’autoactivité électrique du neurone géant (Aplysia depilans). C. R. Soc. Biol. 159: 1770–1776, 1965 a.Google Scholar
  7. (7).
    Chalazonitis N, Gola M, Arvanitaki A: Microspectrophotométrie différentielle sur des neurones géants in vivo, d’Aplysia depilans. Mesure de la diffusibilité de l’oxygène. C. R. Soc. Biol. 159: 2440–2445, 1965 b.Google Scholar
  8. (8).
    Chalazonitis N, Nahas GG: Small pCO2change and neuronal synaptic activation. Nature (London) 205: 1016–1017, 1965 c.Google Scholar
  9. (9).
    Chalazonitis N, Gola M, Arvanitaki A: Régulation de l’activabilité synaptique des neurones par de faibles variations de la pO2intracellulaire (Aplysia depilans). C. R. Soc. Biol. 160: 1020–1023, 1966 a.Google Scholar
  10. (10).
    Gola M: Mesures spectrophotométriques de la saturation en oxygène de Phémoprotéine d’Aplysia depilans. C.R.Soc. Biol. 159: 1777–1782, 1965Google Scholar
  11. (11).
    Chalazonitis N, Takeuchi H: Application microélectrophorétique locale d’ions H et variations des paramètres bioélectriques de la membrane neuronique. C. R. Soc. Biol. 160:610–615, 1966.Google Scholar
  12. (12).
    Chalazonitis N: Intracellular pO2control on excitability and synaptic activability in Aplysiaand Helixidentifiable giant neurons. Ann. N-Y. Acad. Sci. 147: 419–459, 1968.Google Scholar
  13. (13).
    Chalazonitis N, Arvanitaki A: Neuromembrane electrogenesis during changes in pO2, pCO2and pH. In Costa E, Giacobini E (Editors): Biochemistry of simple neuronal models. Advances in Biochem. Psychopharmacology. New-York, Raven Press, 1970, vol 2, pp 245–284.Google Scholar
  14. (14).
    Chalazonitis N: Simultaneous recordings of pH, pCO2and neuronal activity during hypercapnic transients (identifiable neurons of Aplysia)In Nahas GG, Schaefer KE (Editors):Carbon dioxide and metabolic regulations. New-York, Springer Verlag, 1974, pp.63–80.CrossRefGoogle Scholar
  15. (15).
    Brown AM: Carbon dioxide action on neuronal membranes. In Nahas GG, Schaefer KE (Editors): Carbon dioxide and metabolic regulations. New-York, Springer Verlage 1974, pp 81–86.CrossRefGoogle Scholar
  16. (16).
    Carpenter DO, Hubbard JH, Humphrey DR, Thompson HK, Marschall WH: Carbon dioxide effects on nerve cell function. In Nahas GG, Schaefer KE (Editors): Carbon dioxide and metabolic regulations. New-York, Springer “Verlag, 1974, pp. 49–62.CrossRefGoogle Scholar
  17. (17).
    Biscoe TJ, Purves MJ, Sampson SR: The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivowith intact circulation. J.Physiol. (Lond.) 208: 121–131, 1970.Google Scholar
  18. (18).
    Siesjö BK: Biochemical aspects of cerebral hypoxia. In Penzholz H, Brock M, Hamer J, Klinger M, Spoerri O (Editors): Brain Hypoxia, Pain. Advances in Neurosurgery. New-York, Springer Verlag, 1975, vol 3, pp 54–58.CrossRefGoogle Scholar
  19. (19).
    Biscoe TJ: Carotid body: structure and function. Physiol. Rev. 51: 437–495, 1971.PubMedGoogle Scholar
  20. (20).
    Neil E, O’Regan RG: Effects of sinus and aortic nerve efferents, on arterial chemoreceptor function. J. Physiol (Lond.) 200: 69–71.1985Google Scholar
  21. (21).
    Neil E, O’Regan RG: The effects of efferent electrical stimulation of the cut sinus and aortic nerves on peripheral arterial chemoreceptor activity in the cat. J. Physiol. (Lond.) 215: 15–32, 1971.Google Scholar
  22. (22).
    Eyzaguirre C, Zapata P: The release of acetylcholine from carotid body tissues. Further study of the effects of acetylcholine and cholinergic blocking agents on the chemosensory discharge. J. Physiol. (Lond.) 195: 589–607, 1968.Google Scholar
  23. (23).
    Gerschenfeld HM: Chemical transmitters in invertebrate nervous systems. Soc. exper. Biol. Symp. 20: 299–326, 1966.Google Scholar
  24. (24).
    Kandel ER, Frazier WT, Coggeshall RE: Opposite synaptic actions mediated by different branches of an identifiable interneuron in Aplysia. Science 155: 346–349, 1967.PubMedCrossRefGoogle Scholar
  25. (25).
    Boisson M: Variations distinctes de l’oscillabilité consécutives à l’hyperpolarisation de quelques neurones géants sécré-toires par la noradrenaline (Aplysia depilans, Linné, 1767, fasciata, Poiret, 1790, rosea, Rathké, 1799). Thèse IIIe cycle. Océanographie Biologique. Université Paris. 1973.Google Scholar
  26. (26).
    Gola M, Chalazonitis N: unpublished.Google Scholar
  27. (27).
    Douglas WW: The effect of a ganglion blocking drug hexa-methonium on the response of the cat’s carotid body to various stimuli. J. Physiol. (Lond.) 118: 373–383, 1952.Google Scholar
  28. (28).
    Chalazonitis N, Arvanitaki A: Chromoprotéides et suecinoxydases dans divers grains isolables du protoplasme neuronique. Arch. Sci. Physiol. 10: 291–319, 1956.Google Scholar
  29. (29).
    Wittenberg BA, Briehl RW, Wittenberg TB: Hemoglobins of invertebrate tissues. Biochem. J. 96: 363, 1965.PubMedGoogle Scholar
  30. (30).
    Arvanitaki A, Chalazonitis N: Photopotentiels d’excitation et d’inhibition de différents somata identifiables (Aplysia). Bull. Inst. océanogr. Monaco 57 (1164): 1–83, 1960.Google Scholar
  31. (31).
    Chalazonitis N: Light energy conversion in neuronal membranes. Photochem. Photobiol. 3: 539–549, 1964.CrossRefGoogle Scholar
  32. (32).
    Torrance RW: Prolegomena to arterial chemoreceptors. Torrance S(Editor). Oxford, Blackwell, 1968.Google Scholar
  33. (33).
    Kerkut GA, York B: The oxygen sensitivity of the electrogenic sodium pump in snail neurones. Compar. Biochem. Physiol. 28: 1125, 1969.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • N. Chalazonitis
    • 1
  1. 1.Institut de Neurophysiologie et PsychophysiologieC. N. R. S.Marseille 2France

Personalised recommendations