Dissociation of Microsomal Ethanol Oxidation from Cytochrome P-450 Catalyzed Drug Metabolism

  • Kostas P. Vatsis
  • Martin P. Schulman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 58)


Considerable evidence is currently available which strongly suggests that, in addition to the alcohol dehydrogenase (ADH)-catalyzed reaction, a pyrazole-insensitive pathway participates in the metabolism of ethanol in vivo (Israel et al., 1970; Lieber and DeCarli, 1972), in the isolated perfused rat liver (Papenberg et al., 1970; Thurman and McKenna, 1974), in rat and mouse liver slices (Thieden, 1971; Lieber and DeCarli, 1970; Vatsis and Schulman, 1973a; Vatsis et al., 1973), and in isolated rat liver parenchymal cells (Grunnet et al., 1973). The non-ADH pathway has two distinguishing properties, namely, it becomes increasingly important at ethanol concentrations (20–80 mM) well above the Km of AHD (Thieden, 1971; Vatsis et al., 1973; Lieber and DeCarli, 1973), and appears to be inducible by chronic ethanol feeding (Lieber and DeCarli, 1970, 1972) as well as by treatment of animals with phenobarbital (Carter and Isselbacher, 1971; Khanna et al., 1972; Vatsis and Schulman, 1974).


NADPH Oxidase Catalase Activity Liver Microsome Liver Slice Ethanol Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barakat, H. A., Tapscott, E., and Pennington, S. 1974. Ethanol oxidation by components of rat liver microsomes. Biochem. Biophys. Res. Commun. 60: 482–488.PubMedCrossRefGoogle Scholar
  2. Baudhuin, P., Beaufay, H., Rahman-Li, Y., Sellinger, O. F., Wattiaux, R., Jacques, P., and DeDuve, C. 1964. Tissue fractionation studies. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat liver tissue. Biochem. J. 92: 179–184.PubMedGoogle Scholar
  3. Carter, E. A., and Isselbacher, K. J. 1971. The role of microsomes in the hepatic metabolism of ethanol. Ann. N. Y. Acad. Sci. 179: 282–294.PubMedCrossRefGoogle Scholar
  4. Castro, J. A., Greene, F. E., Gigon, P., Sasame, H. and Gillette, J. R, 1970. Effect of adrenalectomy and cortisone administration on components of the liver microsomal mixed function oxygenase system of male rats which catalyzes ethylmorphine metabolism. Biochem. Pharmacol. 19: 2461–2467.PubMedCrossRefGoogle Scholar
  5. Davies, D. S., Gigon, P. L., and Gillette, J. R. 1969. Species and sex differences in electron transport systems in liver microsomes and their relationship to ethylmorphine demethyla-tion. Life Sci. 8: 85–91.PubMedCrossRefGoogle Scholar
  6. Deckert, F. W. and Remmer, H. K. 1972. In vitro inhibition of rat and human liver microsomal enzymes by 4-hydroxycoumarin anticoagulants and related compounds. Chem-Biol. Interactions 5: 255–263.CrossRefGoogle Scholar
  7. Gigon, P. L., Gram, T. E. and Gillette, J. R. 1969. Studies on the rate of reduction of hepatic microsomal cytochrome P-450 by reduced nicotinamide adenine dinucleotide phosphate; Effect of drug substrates. Mol. Pharmacol. 5: 109–122.PubMedGoogle Scholar
  8. Grunnet, N., Quistorff, B. and Thieden, H. I. D. 1973. Ratelimiting factors in ethanol oxidation by isolated rat-liver parenchymal cells. Effect of ethanol concentration, fructose, pyruvate and pyrazole. Eur. J. Biochem. 40: 275–282.PubMedCrossRefGoogle Scholar
  9. Hochstein, P. and Ernster, L. 1963. ADP-activated lipid peroxidation coupled to the TPNH oxidase system of microsomes. Biochem. Biophys. Res. Commun. 12: 388–394.PubMedCrossRefGoogle Scholar
  10. Israel, Y., Khanna, J. and Lin, R. 1970. Effect of 2,4-dinitrophenol on the rate of ethanol elimination in the rat in vivo. Biochem. J. 120: 447–448.PubMedGoogle Scholar
  11. Kato, R. and Takanaka, A. 1968. Metabolism of drugs in old rats. I. Activities of NADPH-linked electron transport and drugmetabolizing enzyme systems in liver microsomes of old rats. Jap. J. Pharmacol. 18: 381–388.PubMedCrossRefGoogle Scholar
  12. Kato, R., Takanaka, A. and Onoda, K-I. 1970. Studies on age difference in mice for the activity of drug-metabolizing enzymes of liver microsomes. Jap. J. Pharmacol. 20: 572–576.PubMedCrossRefGoogle Scholar
  13. Khanna, J. M., Kalant, H. and Lin, G. 1970. Metabolism of ethanol by rat liver microsomal enzymes. Biochem. Pharmacol. 19: 2493–2499.PubMedCrossRefGoogle Scholar
  14. Khanna, J. M., Kalant, H. and Lin, G. 1972. Significance in vivo of the increase in microsomal ethanol-oxidizing system after chronic administration of ethanol, phenobarbital and chlorcyclizine. Biochem. Pharmacol. 21: 2215–2226.PubMedCrossRefGoogle Scholar
  15. Levin, W., Lu, A. Y. H., Jacobson, M., Kuntzman, R., Poyer, J. L. and McCay, P. B. 1973. Lipid peroxidation and the degradation of cytochrome P-450 heme. Arch. Biochem. Biophys. 158: 842–852.PubMedCrossRefGoogle Scholar
  16. Lieber, C. S. and DeCarli, L. M. 1970. Hepatic microsomal ethanoloxidizing system. In vitro characteristics and adaptive properties in vivo. J. Biol. Chem. 245: 2505–2512.PubMedGoogle Scholar
  17. Lieber, C. S. and DeCarli, L. M. 1972. The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J. Pharmacol. Exper. Therap. 181: 279–287.Google Scholar
  18. Lieber, C. S. and DeCarli, L. M. 1973. The significance and characterization of hepatic microsomal ethanol oxidation in the liver. Drug.Metabol. Disp. 1: 428–440.Google Scholar
  19. Lin, G., Kalant, H. and Khanna, J. M. 1972. Catalase involvement in microsomal ethanol-oxidizing system. Biochem. Pharmacol. 21: 3305–3308.PubMedCrossRefGoogle Scholar
  20. Masters, B. S. S., Kamin, H., Gibson, Q. H. and Williams, C. H. 1965. Studies on the mechanism of microsomal triphosphopyri-dine nucleotide-cytochrome c reductase. J. Biol. Chem. 240: 921–931.PubMedGoogle Scholar
  21. May, H. E., and McCay, P. B. 1968. Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids. II. Enzymic properties and stoichiometry. J. Biol. Chem. 243: 2296–2305.PubMedGoogle Scholar
  22. Mezey, E., Potter, J. J. and Reed, W. D. 1973. Ethanol oxidation by a component of liver microsomes rich in cytochrome P-450. J. Biol. Chem. 248: 1183–1187.PubMedGoogle Scholar
  23. Nash, T. 1953. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55: 416–421.PubMedGoogle Scholar
  24. Nelson, E. B., Kohl, K. B. and Masters, B. S. S. 1973. The role of the NADPH-cytochrome c reductase in the microsomal oxidation of ethanol and methanol. Drug Metabol. Disp. 1: 455–458.Google Scholar
  25. Omura, T. and Sato, R. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370–2378.PubMedGoogle Scholar
  26. Ottolenghi, A. 1959. Interaction of ascorbic acid and mitochondrial lipides. Arch. Biochem. Biophys. 79: 355–363.CrossRefGoogle Scholar
  27. Papenberg, J., Wartburg, J. P. and Aebi, H. 1970. Metabolism of ethanol and fructose in the perfused rat liver. Enzym. Biol. Clin. 11: 237–250.Google Scholar
  28. Pennington, S. N., Chattopadhyay, S. K. and Brown, H. D. 1970. A possible pathway for ethanol-induced fatty liver and modification of liver injury by antioxidants. Quart. J. Stud. Alc. 31:13–19.Google Scholar
  29. Roach, M. K., Reese, W. N. and Creaven, P. J. 1969. Ethanol oxidation in the microsomal fraction of rat liver. Biochem. Biophys. Res. Commun. 36: 596–602.PubMedCrossRefGoogle Scholar
  30. Rubin, E., Gang, H., Misra, P. and Lieber, C. S. 1970. Inhibition of drug metabolism by acute ethanol intoxication. A hepatic microsomal mechanism. Am. J. Med. 49: 801–806.PubMedCrossRefGoogle Scholar
  31. Schacter, B. A., Marver, H. S. and Myer, U. A. 1972. Hemoprotein Catabolism during Stimulation of Microsomal Lipid Peroxidation. Biochim. Biophys. Acta. 279: 221–227.PubMedCrossRefGoogle Scholar
  32. Teschke, R., Hasumura, Y., Joly, J-G., Ishii, H. and Lieber, C. S. 1972. Microsomal ethanol-oxidizing system (MEOS): Purification and properties of a rat liver system free of catalase and alcohol dehydrogenase. Biochem. Biophys. Res. Commun. 49: 1187–1193.PubMedCrossRefGoogle Scholar
  33. Teschke, R., Hasumura, Y. and Lieber, C. S. 1974. Hepatic microsomal ethanol-oxidizing system: Solubilization, isolation, and characterization. Arch. Biochem. Biophys. 163: 404–415.PubMedCrossRefGoogle Scholar
  34. Thieden, H. I. D. 1971. The effect of ethanol concentration on ethanol oxidation rate in rat liver slices. Acta Chem. Scand. 25: 3421–3427.PubMedCrossRefGoogle Scholar
  35. Thurman, R. B., and McKenna, W. 1974. Activation of ethanol utilization in perfused liver from normal and ethanol-pretreated rats. Hoppe-Seyler’s Z. Physiol. Chem. 355: 336–340.PubMedCrossRefGoogle Scholar
  36. Thurman, R. G. and Scholz, R. 1973. The role of hydrogen peroxide and catalase in hepatic microsomal ethanol oxidation. Drug Metabol. Disp. 1: 441–448.Google Scholar
  37. Thurman, R. G., Ley, H. G. and Scholz, R. 1972. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur. J. Biochem. 25: 420–430.PubMedCrossRefGoogle Scholar
  38. Thurman, R. G., Hesse, S. and Scholz, R. 1974. The role of NADPH-dependent hydrogen peroxide formation and catalase in hepatic microsomal ethanol oxidation, pp. 257–270. In R. G. Thurman, T. Yonetani, J. R. Williamson, and B. Chance (ed.). Alcohol and Aldehyde Metabolizing Systems. Academic Press, New York.Google Scholar
  39. Vatsis, K. P. and Schulman, M. P. 1973a. Peroxidatic ethanol oxidation in homogenates of mouse liver. The Pharmacologist 15: 160.Google Scholar
  40. Vatsis, K. P. and Schulman, M. P. 1973b. Absence of ethanol metabolism in ‘acatalatic’ hepatic microsomes that oxidize drugs. Biochem. Biophys. Res. Commun. 52: 588–594.PubMedCrossRefGoogle Scholar
  41. Vatsis, K. P. and Schulman, M. P. 1974. ‘Acatalatic’ hepatic microsomes metabolize drugs but not ethanol, pp. 287–298. In R. G. Thurman, T. Yonetani, J. R. Williamson, and B. Chance (ed.). Alcohol and Aldehyde Metabolizing Systems. Academic Press, New York.Google Scholar
  42. Vatsis, K. P., Miller, C. and Schulman, M. P. 1973. Ethanol metabolism in vivo and by hepatic microsomes of mice of different ages. Fed. Proc. 32: 697.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Kostas P. Vatsis
    • 1
  • Martin P. Schulman
    • 1
  1. 1.Department of Pharmacology, School of Basic Medical SciencesUniversity of Illinois College of MedicineChicagoUSA

Personalised recommendations