Advertisement

Drug Metabolism in Isolated Rat Liver Cells

  • Robert Grundin
  • Peter Moldéus
  • Helena Vadi
  • Sten Orrenius
  • Christer von Bahr
  • Dan Bäckström
  • Anders Ehrenberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 58)

Abstract

Although considerable knowledge has been gathered on the functional aspects of microsomal monooxygenation, comparatively little has so far been known about the intracellular regulation of this process. For such studies, we have found the isolated rat liver cell system to be a very useful model, combining the convenience of an in vitro system with the access to the complex mechanisms of the intact in vivo system. This model has the advantage over the perfused liver that it readily lends itself to the study of rapid reaction sequences and makes quantitation of short-term drug metabolic reactions easier. It is also superior to liver slices which often show considerable leakage of adenine and pyridine nucleotides and where substrate penetration and oxygen diffusion may present problems depending on the relative thickness of the slice.

Keywords

Drug Metabolism Liver Microsome Spectral Change Isolate Liver Cell Sample Cuvette 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Bahr, C., Vadi, H., Grundin, R., Moldéus, P. and Orrenius, S. (1974). Spectral studies on the rapid uptake and subsequent binding of drugs to cytochrome P-450 in isolated rat liver cells. Biochem. Biophys. Res. Commun. 59: 334–339CrossRefGoogle Scholar
  2. Bodin, N. O. (1974) Identification of the major urinary metabolite of alprenolol in man, dog and rat. Life Sciences 14: 685–692PubMedCrossRefGoogle Scholar
  3. Cammer, W., Schenkman, J. B. and Estabrook, R. W. (1966) EPR measurements of substrate interaction with cytochrome P-450. Biochem. Biophys. Res. Commun. 23: 264–268PubMedCrossRefGoogle Scholar
  4. Grundin, R., Moldéus, P., Orrenius, S., Borg, K. O. Skånberg, I. and von Bahr, C. (1974) The possible role of cytochrome P-450 in the liver “first pass elimination” of a β-receptor blocking drug. Acta Toxicol. Pharmacol. 35: 242–260CrossRefGoogle Scholar
  5. Hanninen, O. (1968) On the metabolic regulation in the glucuronic acid pathway in the rat tissues. Ann. Acad. Sci. Fenn. A, II, 142: 43–45Google Scholar
  6. Hems, R., Ross, B. P., Berry, M N. and Krebs, H. A. (1966) Gluco-neogenesis in the perfused rat liver. Biochem. J., 101: 284–292.PubMedGoogle Scholar
  7. Henderson, P. Th. and Dewaide, J. H. (1969) Metabolism of drugs in isolated rat hepatocytes. Biochem. Pharmacol. 18: 2087–2094PubMedCrossRefGoogle Scholar
  8. Holtzman, J. L., Rothman, V. and Margolis, S. (1972) Metabolism of drugs by isolated hepatocytes. Biochem. Pharmacol. 21: 581–584PubMedCrossRefGoogle Scholar
  9. Klingenberg, M. (1970) In Bergmeyer, H. V. (ed.) pp. 1975–1990 Methoden der Enzymatischen Analyse, Verlag Chemie, WeinheimGoogle Scholar
  10. Krebs, H. A., Cornell, N. W., Lund, P. and Hems, R. (1974) Isolated liver cells as experimental material, pp. 726–753. In F. Lundqvist and N. Tygstrup (eds.) Regulation of hepatic metabolism, Munksgaard, Copenhagen.Google Scholar
  11. Moldeus, P., Grundin, R., von Bahr, C. and Orrenius, S. (1973) Spectral studies on drug cytochrome P-450 interaction in isolated rat liver cells. Biochem. Biophys. Res. Commun. 55: 937–938.PubMedCrossRefGoogle Scholar
  12. Moldéus, P., Grundin, R., Vadi, H. and Orrenius, S. (1974) A study of drug metabolism linked to cytochrome P-450 in isolated rat liver cells. Eur. J. Biochem. 46: 351–360.PubMedCrossRefGoogle Scholar
  13. Peisach, J., Stern, J. O. and Blumberg, W. E. (1973) Optical and magnetic probes of the structure of cytochrome P-450’s. Drug Metabolism and Disposition 1: 45–61PubMedGoogle Scholar
  14. Quagliariello, E., Papa, S., Meijer, A. J. and Tager, J. M. (1968) Substrate transport in mitochondria and control of metabolism. In L. Ernster and Z. Drahota (eds.) pp. 335–346. Mitochondria, Structure and Function, FEBS Sumposium, vol. 17., Academic Press, New York.Google Scholar
  15. Quistorff, B., Bondesen, S. and Grunnet, N. (1973) Preparation and biochemical characterization of parenchymal cells from rat liver. Biochem. Biophys. Acta, 320: 503–516PubMedCrossRefGoogle Scholar
  16. Schenkman, J. B., Remmer, H. and Estabrook, R. W. (1967) Spectral studies of drug interaction with hepatic microsomal cytochrome. Molec. Pharmacol. 3: 113–123Google Scholar
  17. Seglen, P. O. (1972) Preparation of rat liver cells. I. Effect of Ca2+ on enzymatic dispersion of isolated, perfused liver. Experimental Cell Research 74: 450–454PubMedCrossRefGoogle Scholar
  18. Thurman, R. G. and Scholz, R. (1969) Mixed function oxidation in perfused rat liver. The effect of aminopyrine on oxygen uptake. Eur. J. Biochem. 10: 459–467PubMedCrossRefGoogle Scholar
  19. Ullrich, V. (1969) On the hydroxylation of cyclohexane in rat liver microsomes. Hoppe-Seylers Z. Physiol. Chem. 350: 357 365.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Robert Grundin
    • 1
  • Peter Moldéus
    • 1
  • Helena Vadi
    • 1
  • Sten Orrenius
    • 1
  • Christer von Bahr
    • 2
  • Dan Bäckström
    • 3
  • Anders Ehrenberg
    • 3
  1. 1.Department of Forensic MedicineKarolinska InstitutetSweden
  2. 2.Department of MedicineHuddinge University HospitalSweden
  3. 3.Department of BiophysicsUniversity of StockholmSweden

Personalised recommendations