Skip to main content

Relativistic Effects in Hyperfine Interactions

  • Conference paper
Book cover Mössbauer Effect Methodology

Abstract

The treatment of the theory of hyperfine interactions beginning initially from a relativistic viewpoint yields a number of results which differ from those of the non- relativistic approach. For both dipole and quadrupole interactions, one finds the necessity for different <r-3> values for each in the terms of the Hamiltonian. In the magnetic dipole case, an additional term is present which has the appearance of a core polarization contribution to the hyperfine field, although it arises strictly from the open shell electrons. In the electric quadrupole case, two additional interactions appear which have no non-relativistic analogue. The relativistic approach will be briefly summarized and applications to the lanthanide and actinide series reviewed. Of particular interest will be the consideration of experimental values of <r-3> and of core polarization fields.

Work performed under the auspices of the USAEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. M. Kalvius, in “Proc. Int. Conf. Hyperfine Interactions Detected by Nuclear Radiation”, Rehovot, Jerusalem, Israel, 1970, in press.

    Google Scholar 

  2. C. Schwartz, Phys. Rev. 97, 380 (1955).

    Article  CAS  Google Scholar 

  3. P. G. H. Sandars and J. Beck, Proc. Roy. Soc. (London) A289, 97 (1965).

    Google Scholar 

  4. Y. Bordarier, B. R. Judd and M. Klapisch, Proc. Roy. Soc. (London) A289, 81 (1965).

    Google Scholar 

  5. W. Burton Lewis, in “Proc. XVIth Colloque Ampere: Magnetic Resonances and Related Phenomena”, Bucharest, Romania, 1970, in press.

    Google Scholar 

  6. W. Burton Lewis, Joseph B. Mann, David A. Liberman and Don T. Cromer, J. Chem. Phys. 53, 809 (1970).

    Article  CAS  Google Scholar 

  7. P. A. M. Dirac, “Quantum Mechanics” (Oxford Univ. Press, London, 1958).

    Google Scholar 

  8. I. P. Grant, Adv. Phys. 19, 747 (l970).

    Google Scholar 

  9. B. R. Judd, “Operator Techniques in Atomic Spectroscopy” (McGraw Hill, New York, 1963).

    Google Scholar 

  10. From Ref. (3), with the correction of a minor misprint.

    Google Scholar 

  11. J. C. Hubbs, R. Marrus, W. A. Nierenberg and J. L. Worcester, Phys. Rev. 109, 390 (1958).

    Article  CAS  Google Scholar 

  12. For example, see J. Kondo, J. Phys. Soc. Japan 16, 1690 (l96l).

    Google Scholar 

  13. A. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058 (1962).

    Article  CAS  Google Scholar 

  14. B. Bleaney, in “Proc. Third Int. Cong. Quantum Electronics”, Paris, 1963, Ed. P. Grivet and N. Bloembergen (Columbia Univ. Press, New York, 1964).

    Google Scholar 

  15. B. R. Judd, Proc. Phys. Soc. 82, 874 (1963).

    Article  CAS  Google Scholar 

  16. R. E. Watson and A. J. Freeman, in “Hyperfine Interactions”, Ed. A. J. Freeman and R. B. Frankel (Academic Press, New York, 1967).

    Google Scholar 

  17. G. K. Woodgate, Proc. Roy. Soc. (London) A293, 117 (1966).

    Google Scholar 

  18. A. Rosen, J. Phys. B2, 1257 (1969).

    Google Scholar 

  19. S. K. Chan and D. J. Lam, in “Proc. 4th Int. Conf. Plutonium and Other Actinides”, Santa Fe, New Mexico, 1970, Ed. W. N. Miner (Mett. Soc. Am. Inst. Mining, New York, I970); G. M. Kalvius, M. B. Brodsky, B. D. Dunlap, Moshe Kuznietz, D. J. Lam, S. L. Ruby, and G. K. Shenoy, Proc. Int. Conf. Magnetism, Grenoble, 1970,in press.

    Google Scholar 

  20. N. Edelstein and R. Mehlhorn, Phys. Rev. B2, 1225 (1970).

    Google Scholar 

  21. C. J. Lenander, Phys. Rev. 130, 1033 (1963).

    Article  CAS  Google Scholar 

  22. L. Evans, P. G. H. Sandars and G. K. Woodgate, Proc. Roy. Soc. (London) A289, 114 (1965).

    Google Scholar 

  23. Lloyd Armstrong, Jr. and Richard Marrus, Phys. Rev. 144, 994 (1966).

    Article  CAS  Google Scholar 

  24. J. Bauche and B. R. Judd, Proc. Phys. Soc. (London) 83, 145 (1964).

    Article  CAS  Google Scholar 

  25. For example, see G. J. Ehnholm, T. E. Katila, O. V. Lounasmaa, P. Reivari, G. M. Kalvius and G. K. Shenoy, Z. Physik, in press.

    Google Scholar 

  26. W. C. Easley, UCRL-17699, 1967.

    Google Scholar 

  27. R. Winkler, Z. Physik 184, 433 (1965).

    Article  CAS  Google Scholar 

  28. A. J. Freeman, in “Hyperfine Structure and Nuclear Radiations”, Ed. E. Matthias and D. Shirley (North-Holland, Amsterdam, 1968).

    Google Scholar 

  29. S. L. Ruby, G. M. Kalvius, B. D. Dunlap, G. K. Shenoy, D. Cohen, M. B. Brodsky and D. J. Lam, Phys. Rev. 184, 374 (1969).

    Article  CAS  Google Scholar 

  30. For example, see S. Ofer, I. Nowik and S. G. Cohen, in “Chemical Applications of Mössbauer Spectroscopy”, Ed. V. I. Goldanskii and R. H. Herber (Academic Press, New York, 1968).

    Google Scholar 

  31. K. W. H. Stevens, Proc. Phys. Soc. (London) A65, 311 (1954).

    Google Scholar 

  32. L. Evans, P. G. H. Sandars and G. K. Woodgate, Proc. Roy. Soc. (London) A289, 114 (1965).

    Google Scholar 

  33. M. A. Coulthard, Proc. Phys. Soc. (London) 91, 44 (1967).

    Article  CAS  Google Scholar 

  34. L. Evans, P. G. H. Sandars and G. K. Woodgate, Proc. Roy. Soc. (London) A289, 108 (1965).

    Google Scholar 

  35. H. Kopfermann, “Nuclear Moments”, trans. E. Schneider (Academic, New York, 1958).

    Google Scholar 

  36. H. B. G. Casimir, “On the Interaction Between Atomic Nuclei and Electrons”, (Teyler’s Tweede Genootschap, Haarlem, 1936).

    Google Scholar 

  37. W. J. Childs, to be published.

    Google Scholar 

  38. J. B. Mann, Atomic Structure Calculations, Vol. I., Los Alamos Scientific Laboratory Report LA-3691, February 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this paper

Cite this paper

Dunlap, B.D. (1971). Relativistic Effects in Hyperfine Interactions. In: Gruverman, I.J. (eds) Mössbauer Effect Methodology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9002-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9002-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9004-0

  • Online ISBN: 978-1-4615-9002-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics