Skip to main content

Superconducting Coils

  • Conference paper

Abstract

The ability of Type II superconductors to maintain zero electrical resistance under direct current conditions while in the presence of high magnetic fields has led to various current and proposed future uses for superconducting coils. These include high energy physics applications, containment coils for controlled thermonuclear fusion research, saddle shaped coils for energy conversion in magnetohydrodynamic power generation, superconducting coils for the field windings of electrical motors and generators, both for utility applications as well as for electric ship propulsion, levitating coils to suspend a high speed ground vehicle above an electrically conducting guideway, coils for magnetic storage of electrical energy, as well as Laboratory coils for use in a wide variety of research ranging from low temperature solid state physics to novel applications of the magnetic fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Britton, R. B., Proc. 1968 Summer Study Supercond. Devices and Accelerators, Brookhaven National. Laboratory, BNL. 50155, p. 449, 1968.

    Google Scholar 

  2. Stekly, Z. J. J., Journal of Applied Physics Vol. 42, No. 1, p. 65, Jan. 1971.

    Article  CAS  Google Scholar 

  3. Stekly, Z. J. J., et al., BNL 50155, p. 748.

    Google Scholar 

  4. Gauster, W. F., and Hendricks, J.B., Journal of Applied Physics Vol. 39, p. 2572, 1968.

    Article  Google Scholar 

  5. Maddock, B. J., et al. Cryogenics, Vol. 9, No. 4, p. 261, August, 1969.

    Article  CAS  Google Scholar 

  6. Kremlev, M. G., Cryogenics, Vol. 7, p. 267, 1967.

    CAS  Google Scholar 

  7. Chester, P. F., Rep. Prog. Phys. XXX, Part II, pp. 561–614, 1967.

    Article  Google Scholar 

  8. Hart, H. R., BNL 50155, pp. 571–600.

    Google Scholar 

  9. Rutherford Laboratory Preprint, RPP/A73, November 1969.

    Google Scholar 

  10. Hancox, R., Proc. I.E.E.E., 113., pp. 1221–1228, 1966.

    CAS  Google Scholar 

  11. Hancox, R., I.E.E.E. Trans. Magnetics, MAG-4, pp. 486–8, 1968.

    Article  Google Scholar 

  12. Laverick, C., Argonne National Laboratory, ANL/HEP 6810, May, 1968.

    Google Scholar 

  13. Smith, P.F.,Wilson, M.N., Walters, C.R., and Lewin, J. D., BNL 50155, p. 913.

    Google Scholar 

  14. Wittgenstein, F., et al., Cryogenics, pp. 158–164, June 1969.

    Google Scholar 

  15. Benz, M. G., Proceedings of Les Champs Magnetiques Intenses Leur Production et Leurs Applications, Grenoble, Sept. 1966., Editions du Centre National de la Recherche Scientifique, Paris, 1967.

    Google Scholar 

  16. Benz, M. G., General Electric Report No. 66-C-044, Feb., 1966.

    Google Scholar 

  17. Fairbanks, D. F., Advances in Cryogenic Engineering, Vol. 14, p. 133, Plenum Press, New York, 1969.

    Google Scholar 

  18. Stekly, Z. J. J., et al., Journal of Applied Physics, Vol 39, 6, p. 264, 1968,

    Article  Google Scholar 

  19. Stekly, Z. J. J., Advances in Cryogenic Engineering, Vol. 8, p. 585, New York, Plenum Press, 1963.

    Google Scholar 

  20. Stekly, Z. J. J., Journal of Applied Physics, Vol. 42, No. 1, pp. 65–72, Jan. 1971.

    Article  CAS  Google Scholar 

  21. Levy, R. H., American Rocket Society Journal, p. 787, May 1962.

    Google Scholar 

  22. Fast, R. F., et al., Journal of Applied Physics, Vol. 42, No. 1, p. 79 Jan. 1971.

    Article  Google Scholar 

  23. Rogers, J. D., et al., Journal of Applied Physics, Vol. 42, No. 1, p. 73, Jan. 1971.

    Article  CAS  Google Scholar 

  24. Lucas, E. J., et al., Advances in Cryogenic Engineering, Vol. 15, p, 167, 1969.

    Google Scholar 

  25. Henning, C. D., et al., Advances in Cryogenic Engineering, Vol. 14, p. 98, 1968.

    Google Scholar 

  26. Coles, W. D., Advances in Cryogenic Engineering, Vol. 13, p. 42, 1967.

    Google Scholar 

  27. Stekly, Z. J. J., Electricity from MHD, International Atomic Energy Agency, Vienna, 1968.

    Google Scholar 

  28. Cryogenic Engineering (Japanese). Vol. 5, No. 2, 1970. (Whole Issue).

    Google Scholar 

  29. Berruyer, A., et al., Advanced Cryogenic Engineering, Vol. 15, p. 158, 1969.

    Google Scholar 

  30. Proc. 1968 Summer Study Supercond. Devices and Accelerators, Brookhaven National Laboratory, BNL 50155, 1968.

    Google Scholar 

  31. Montgomery, D. B., et al., Advances in Cryogenic Engineering, Vol. 14, p. 88, 1968.

    Google Scholar 

  32. Purcell, J. R., Argonne National Laboratory Report ANL/HEP 6813, June 1968.

    Google Scholar 

  33. Meyer, G., Maix, R., Brown-Boveri Review (Date Unknown).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this paper

Cite this paper

Stekly, Z.J.J. (1973). Superconducting Coils. In: Gregory, W.D., Mathews, W.N., Edelsack, E.A. (eds) The Science and Technology of Superconductivity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8978-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8978-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8980-8

  • Online ISBN: 978-1-4615-8978-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics