Skip to main content

Linear Free Energy Relationships as Tools for Investigating Chemical Similarity—Theory and Practice

  • Chapter
Correlation Analysis in Chemistry

Abstract

Organic chemistry has always depended much more on empirical rules than on models deduced from theoretical postulates. This is because the complexity of organic reactions in solution makes the relationship between experiment and pure “microscopic” theory based on atomic and molecular concepts extremely difficult to discover. Thus, it is at present impossible to reach a thorough understanding of most phenomena in organic chemistry on the basis of microscopic theory.1

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-1-4615-8831-3_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. L. P. Hammett, Physical Organic Chemistry, 2nd edition, p. 347 (McGraw-Hill, New York, 1970).

    Google Scholar 

  2. J. E. Leffler and E. Grunwald, Rates and Equilibria of Organic Reactions, p. 128 (Wiley, New York, 1963).

    Google Scholar 

  3. N. B. Chapman and J. Shorter, eds., Advances in Linear Free Energy Relationships (Plenum, London, 1972).

    Google Scholar 

  4. L. P. Hammett, Physical Organic Chemistry, Chap. 7 (McGraw-Hill, New York, 1940).

    Google Scholar 

  5. Reference 1, p. 355.

    Google Scholar 

  6. Reference 2, p. 172.

    Google Scholar 

  7. O. Exner, in Ref. 3, p. 2.

    Google Scholar 

  8. S. Wold, Chem. Scripta, 5, 97 (1974).

    CAS  Google Scholar 

  9. The analogy principle was clearly formulated in organic chemistry in the middle of the 19th century; see for instance A. Kekulé, Lehrbuch der Organischen Chemie, Band I, pp. 124–132 (Verlag von Ferdinand Enke, Erlangen, 1861).

    Google Scholar 

  10. Reference 1, p. 348.

    Google Scholar 

  11. L. P. Hammett, Foreword to Ref. 3.

    Google Scholar 

  12. G. S. Hammond, J. Chem. Educ., 51, 559 (1974).

    Article  Google Scholar 

  13. V. A. Palm, Osnovy Kolichestvennoi Teorii organicheskikh Reaktsii (Izdatelstvo Khimiya, Leningrad, 1967); German translation, Grundlagen der Quantitativen Theorie Organischer Reaktionen (Akademie Verlag, Berlin, D.D.R., 1971).

    Google Scholar 

  14. H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, p. 28 (Wiley, New York, 1944).

    Google Scholar 

  15. S. Wold and M. Sjöström, Chem. Scripta, 2, 49 (1972).

    CAS  Google Scholar 

  16. M. Sjöström and S. Wold, Chem. Scripta, 6, 114 (1974).

    Google Scholar 

  17. M. Sjöström and S. Wold, Chem. Scripta, 9, 200 (1976).

    Google Scholar 

  18. O. Exner, Progr. Phys. Org. Chem., 10, 411 (1973).

    Article  CAS  Google Scholar 

  19. O. Exner, Nature, 227, 366 (1970).

    Article  CAS  Google Scholar 

  20. S. Wold and O. Exner, Chem. Scripta, 3, 5 (1973).

    CAS  Google Scholar 

  21. C. D. Ritchie and W. F. Sager, Progr. Phys. Org. Chem., 2, 363 (1964).

    Google Scholar 

  22. Reference 2, p. 376.

    Google Scholar 

  23. L. G. Hepler, Canad. J. Chem., 49, 2803 (1971).

    Article  CAS  Google Scholar 

  24. Reference 1, p. 107.

    Google Scholar 

  25. R. C. Petersen, J. Org. Chem., 29, 3133 (1964).

    Article  CAS  Google Scholar 

  26. K. B. Wiberg, Physical Organic Chemistry, p. 379 (Wiley, New York, 1964).

    Google Scholar 

  27. Reference 1, p. 401.

    Google Scholar 

  28. R. W. Taft, J. Phys. Chem., 64, 1805 (1960).

    Article  CAS  Google Scholar 

  29. T. M. Krygowski, Bull. Acad. polon. Sci., Sér. Sci. chim., 19, 61 (1971).

    CAS  Google Scholar 

  30. P. R. Wells and W. Adcock, Austral. J. Chem., 19, 221 (1966).

    Article  CAS  Google Scholar 

  31. J. D. Roberts, E. A. McElhill, and R. Armstrong, J. Amer. Chem. Soc., 71, 2923 (1949).

    Article  CAS  Google Scholar 

  32. J. D. Roberts and W. T. Moreland Jr., J. Amer. Chem. Soc., 75, 2167 (1953).

    Article  CAS  Google Scholar 

  33. K. Kindler, Justus Liebigs Ann. Chem., 450, 1 (1926).

    Article  CAS  Google Scholar 

  34. A. J. Hoefnagel and B. M. Wepster, J. Amer. Chem. Soc., 95, 5357 (1973).

    Article  CAS  Google Scholar 

  35. K. Kindler, Justus Liebigs Ann. Chem., 452, 90 (1927).

    Article  CAS  Google Scholar 

  36. E. Grünwald and B. J. Berkowitz, J. Amer. Chem. Soc., 73, 4939 (1951).

    Article  Google Scholar 

  37. J. Hine, J. Amer. Chem. Soc., 81, 1126 (1959).

    Article  CAS  Google Scholar 

  38. A. R. Katritzky and R. D. Topsom, J. Chem. Educ., 48, 427 (1971).

    Article  CAS  Google Scholar 

  39. S. Ehrenson, R. T. C. Brownlee, and R. W. Taft, Progr. Phys. Org. Chem., 10, 1 (1973).

    Article  CAS  Google Scholar 

  40. S. Clementi, F. Fringuelli, P. Linda, and G. Savelli, Gazz. Chim. Ital., 105, 281 (1975).

    CAS  Google Scholar 

  41. C. G. Swain and E. C. Lupton, J. Amer. Chem. Soc., 90, 4328 (1968).

    Article  CAS  Google Scholar 

  42. L. M. Stock and H. C. Brown, Adv. Phys. Org. Chem., 1, 35 (1963).

    Article  CAS  Google Scholar 

  43. H. H. Jaffé, Chem. Rev., 53, 191 (1953).

    Article  Google Scholar 

  44. S. Ehrenson, Progr. Phys. Org. Chem., 2, 241 (1964).

    Google Scholar 

  45. T. W. Anderson, An Introduction to Multivariate Statistical Analysis (Wiley, New York, 1958).

    Google Scholar 

  46. H. H. Harman, Modern Factor Analysis (University of Chicago Press, Chicago, 2nd edn., 1967).

    Google Scholar 

  47. P. H. Weiner, E. R. Malinowski, and A. R. Levinstone, J. Phys. Chem., 74, 4537 (1970).

    Article  Google Scholar 

  48. P. H. Weiner and E. R. Malinowski, Chemical Applications of Factor Analysis (to be published, 1977).

    Google Scholar 

  49. S. Wold, Pattern Recognition, 8, 127 (1976).

    Article  Google Scholar 

  50. J. W. Al and B. M. Wepster, Report, January 1958, Technische Hogeschool, Delft.

    Google Scholar 

  51. H. Wold, in Multivariate Analysis, P. R. Krishnaiah, ed. (Academic Press, New York, 1967).

    Google Scholar 

  52. A. Christoffersson, The One-Component Model with Incomplete Data (Thesis, Uppsala University, Uppsala, Sweden, 1970).

    Google Scholar 

  53. V. M. Maremäe and V. A. Palm, Reakts. spos. org. Soedinenii, 1(2), 85 (1964).

    Google Scholar 

  54. O. L. Davies and P. L. Goldsmith, eds., Statistical Methods in Research and Production (Oliver and Boyd, Edinburgh, 4th edn., 1972).

    Google Scholar 

  55. P. D. Lark, B. R. Craven, and R. C. L. Bosworth, The Handling of Chemical Data, p. 182 (Pergamon Press, Oxford, 1968).

    Google Scholar 

  56. N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1966).

    Google Scholar 

  57. D. H. McDaniel and H. C. Brown, J. Org. Chem., 23, 420 (1958).

    Article  CAS  Google Scholar 

  58. P. Prescott, Technometrics, 17, 129 (1975).

    Google Scholar 

  59. I. M. Chakravarti, R. G. Laha, and J. Roy, Handbook of Methods of Applied Statistics, Vol. 1, pp. 395–403 (Wiley, New York, 1967).

    Google Scholar 

  60. O. Exner, Ref. 3, p. 12.

    Google Scholar 

  61. Reference 54, p. 261.

    Google Scholar 

  62. C. K. Hancock, J. Chem. Educ., 42, 608 (1965).

    Article  CAS  Google Scholar 

  63. O. Exner, Ref. 3, p. 18.

    Google Scholar 

  64. G. E. P. Box and W. G. Hunter, Technometrics, 7, 23 (1965).

    Google Scholar 

  65. B. R. Kowalski and C. F. Bender, J. Amer. Chem. Soc., 94, 5632 (1972).

    Article  CAS  Google Scholar 

  66. B. R. Kowalski and C. F. Bender, J. Amer. Chem. Soc., 95, 686 (1973).

    Article  CAS  Google Scholar 

  67. B. R. Kowalski, in Computers in Chemical and Biological Research, Vol. 2, C. E. Klopfenstein and C. L. Wilkins, eds. (Academic Press, New York, 1974).

    Google Scholar 

  68. T. Cacoullos, ed., Discriminant Analysis and Applications (Academic Press, New York, 1973).

    Google Scholar 

  69. R. Mecke and K. Noack, Chem. Ber., 93, 210 (1960).

    Article  CAS  Google Scholar 

  70. A. P. Marks and R. S. Drago, J. Amer. Chem. Soc., 97, 3324 (1975).

    Article  CAS  Google Scholar 

  71. M. Godfrey, J. Chem. Soc. Perkin II, 1016 (1975).

    Google Scholar 

  72. R. Ponec and V. Chvalovský, Coll. Czech. Chem. Comm., 39, 3091 (1974).

    CAS  Google Scholar 

  73. Reference 1, p. 365.

    Google Scholar 

  74. Reference 3, p. 52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Wold, S., Sjöström, M. (1978). Linear Free Energy Relationships as Tools for Investigating Chemical Similarity—Theory and Practice. In: Chapman, N.B., Shorter, J. (eds) Correlation Analysis in Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8831-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8831-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8833-7

  • Online ISBN: 978-1-4615-8831-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics