Skip to main content

Lattice Dynamics and Ionic Motion in Superionic Conductors

  • Chapter

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

Superionic conductors are characterized by an electrical conductivity comparable to that of a liquid electrolyte 1. Classically the approach in discussing the d.c. conductivity σ(0) has been to treat it in terms of defect concentration, defect mobility and their respective activation energies 2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fast Ion Transport in Solids, Solid State Batteries and Devices, W. van Gool ed. North Holland Publ. Co, Amsterdam (1973).

    Google Scholar 

  2. C.P. Flynn, “Point Defects and Diffusion” Clarendon Press, Oxford (1972).

    Google Scholar 

  3. W.J. Pardee and G.D. Mahan, J. Sol. State Chem. 15, 310 (1975).

    Article  ADS  Google Scholar 

  4. S.J. Allen and J.P. Remeika, Phys. Rev. Letters. 33, 1478 (1974).

    Article  ADS  Google Scholar 

  5. B.A. Huberman and P.N. Sen, Phys. Rev. Letters 33., 1379 P.N. Sen and B.A. Huberman, Phys. Rev. Letters 34, 1059

    Google Scholar 

  6. P. Brüesch, S. Strässler and H.R. Zeller, Phys. stat. sol. (a) 31, 217 (1975).

    Article  ADS  Google Scholar 

  7. P. Fulde, L. Pietronero, W.R. Schneider and S. Strässler, Phys. Rev. Letters 26, 1776 (1975).

    Article  ADS  Google Scholar 

  8. C.P. Flynn, Phys. Rev. 171, 682 (1968).

    Article  ADS  Google Scholar 

  9. H.G. Reik and D. Heese, J. Phys. Chem. Sol. 28, 581 (1967).

    Article  ADS  Google Scholar 

  10. H. Mori, Progr. theor. Phys. (Kyoto) 33, 423 (1965).

    Article  ADS  MATH  Google Scholar 

  11. W. Götze and M. Lücke, Phys. Rev. A 11, 2173 (1975).

    Article  ADS  Google Scholar 

  12. W.R. Schneider, to appear in Z. Phys. B (1976).

    Google Scholar 

  13. R. Kubo, Rep. Progr. Phys. 29 (Part 1 ), 225 (1966).

    MathSciNet  Google Scholar 

  14. P. Brüesch, L. Pietronero and H.R. Zeller, to be published.

    Google Scholar 

  15. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford (1954).

    MATH  Google Scholar 

  16. S. Strässler, P. Brüesch, L. Pietronero and H.R. Zeller, to be published.

    Google Scholar 

  17. K. Funke and A. Jost, Ber. Bunsenges. phys. Chem. 75, 436 (1971).

    Google Scholar 

  18. C.P. Flynn and A.M. Stoneham, Phys. Rev. B 1, 3966 (1970).

    Article  ADS  Google Scholar 

  19. F.G. Mahan and W.J. Pardee, Phys. Lett. 49 A, 325 (1974).

    Google Scholar 

  20. H. Hinkelmann and B.A. Huberman, preprint.

    Google Scholar 

  21. J. Völkl and G. Alefeld in “Diffusion in Solids, Recent Developments” A.S. Nowick and J.J. Burton ed. Academic Press, New York, London (1975).

    Google Scholar 

  22. See chap. 6 of ref. 2 and references cited therein.

    Google Scholar 

  23. See paper by A.D. Leclair in ref. 1.

    Google Scholar 

  24. H. Sato and R. Kikucki, J. Chem. Phys. S5, 677 (1971). R. Kikucki and H. Sato, J. Chem. Phys. 5J5, 702 (1971).

    Google Scholar 

  25. See paper by M. O’Keefe in ref. 1.

    Google Scholar 

  26. Y. LeCars, R. Comes, L. Deschamps and J. Thery, Acta Cryst. Sect. A 30, 305 (1974). D.B. McWhan, S. J. Allen, J.P. Remeika and P.D. Dornier, Phys. Rev. 35, 953 (1975).

    Google Scholar 

  27. H.U. Beyeler, T. Hibma and C. Schüler, to be published.

    Google Scholar 

  28. A. Krist and R. Tärneberg, 3. Naturforsch. 25 a, 257 (1970).

    Google Scholar 

  29. A resemblence between our model and a model suggested by Clemen and Funke (Ber. Bunsenges. phys. Chem. 79, 1119 (1975)) can be found by substituting their microscopically ill defined “time of flight tl” by ft″1 the time between correlated jumps.

    Google Scholar 

  30. A.C. Scott, F.Y.F. Chu and D.W. McLaughlin, Proc. IEEE 61, 1443 (1973).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Zeller, H.R., Brüesch, P., Pietronero, L., Strässler, S. (1976). Lattice Dynamics and Ionic Motion in Superionic Conductors. In: Mahan, G.D., Roth, W.L. (eds) Superionic Conductors. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8789-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8789-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8791-0

  • Online ISBN: 978-1-4615-8789-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics