Skip to main content

Theoretical Issues in Superionic Conductors

  • Chapter
Superionic Conductors

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

Superionic conductors1 have been defined as solids with ion conductances exceeding 0.01 ohm−l cm−1. Invariably this occurs because an ion species in the solid begins diffusing away from its normal lattice position. Usually this ion species is one of the major constituents of the solid. Thus in AgI, all of the Ag+ ions are believed to diffuse at high temperature, while the I stay in position to define a lattice. In CaF2, it is the F which move. In usual ionic solids, the very small ionic conductivity is provided by impurities or occasional defects. We are interested in a quite different situation—where large scale disorder appears to be an intrinsic process. Thus the ionic conductivity is large, in part, because it is proportional to the density of diffusing ions. This can be very large—of the order of 1022 cm−3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Rice and W. L. Roth, J. Solid State Chem. 4., 294 (1972).

    Article  ADS  Google Scholar 

  2. J. A. A. Ketelaar, Trans. Faraday Soc. 34, 874 (1938).

    Article  Google Scholar 

  3. M. Bettman and C. R. Peters, J. Phys. Chem. 73, 1774 (1969).

    Article  Google Scholar 

  4. G. Burley, Acta Cryst. 23, 1 (1967).

    Article  Google Scholar 

  5. R. E. Carter and W. L. Roth, in Electromotive Force Measurements in High-Temperature Systems ( Institute of Mining and Metallurgy, London, 1967 ) pg. 125–144.

    Google Scholar 

  6. Y. Y. Yao and J. T. Kummer, J. Inorg, Nucl. Chem. 29, 2453 (1967).

    Article  Google Scholar 

  7. J. T. Kummer, Prog. Solid State Chem. 141 (1974).

    Google Scholar 

  8. L. Pauling, The Nature of the Chemical Bond ( Cornell University Press, Ithaca, 1960 ) pg. 514.

    Google Scholar 

  9. T. C. Waddington, Trans. Faraday Soc. 62, 1482 (1966).

    Article  Google Scholar 

  10. J. F. Scott, Revs. Mod. Phys. 46, 83 (1974).

    Google Scholar 

  11. R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics, ( Cambridge University Press, 1939 ) 541.

    Google Scholar 

  12. S. Strassler and C. Kittel, Phys. Rev. 139, A758 (1965).

    Article  ADS  Google Scholar 

  13. B. A. Huberman, Phys. Rev. Letters 32, 1000 (1974).

    Article  Google Scholar 

  14. M. J. Rice, S. Strassler, G. A. Toombs, Phys. Rev. Letters 32, 596 (1974).

    Article  ADS  Google Scholar 

  15. K. W. Browall and J. S. Kasper, J. Solid State Chem. 15, 54 (1975); K. W. Browall, H. Wiedemeier, and J. S. Kasper, ibid 10, 20 (1974).

    Google Scholar 

  16. W. J. Pardee and G. D. Mahan, J. Solid State Chem. 15, 310 (1975).

    Article  ADS  Google Scholar 

  17. S. Geller, Science 157, 308 (1967).

    Article  ADS  Google Scholar 

  18. W. V. Johnston, H. Wiedersich, and G. W. Lindberg, J. Chem. Phys. 51, 3739 (1969); W. J. Pardee and G. D. Mahan, J. Chem. Phys. 61, 2173 (1974).

    Google Scholar 

  19. F. Lederman and M. B. Salamon, Bull. Am. Phys. Soc. 20, 331 (March, 1975 ).

    Google Scholar 

  20. A. S. Dworkin and M. A. Bredig, J. Physical Chem. 77, 1277 (1968).

    Article  Google Scholar 

  21. S. Geller and B. B. Owens, J. Phys. Chem. Solids 33, 1241 (1972).

    Article  ADS  Google Scholar 

  22. Y. Lecars, R., Comes, L. Deschampes, and J. Thery, Acta Cryst.A30, 3Ü5 (1974).

    Google Scholar 

  23. J. P. Boilot, J. Thery, R. Collongues, R. Comes, and A. Guinier, Acta Cryst. (to be published).

    Google Scholar 

  24. D. B. McWhan, S. J. Allen, Jr., J. P. Remeika, and P. D. Dernier, Phys. Rev. Letters 35, 953 (1975).

    Article  ADS  Google Scholar 

  25. C. E. Derrington, A. Lindner, and M. O’Keeffe, J. Solid State Chem. 15, 171 (1975).

    Article  ADS  Google Scholar 

  26. C. E. Derrington and M. O’Keeffe, Solid State Comm. 15, 1175 (1974).

    Article  ADS  Google Scholar 

  27. H. Sato and R. Kikuchi, J. Chem. Phys. 55, 677 (1971).

    Article  ADS  Google Scholar 

  28. R. Kikuchi, Prog. Theor., Phys. Suppl. 35, 1 (1966).

    Google Scholar 

  29. A. Bienenstock and J. Lewis, Phys. Rev. 160, 393 (1967).

    Article  ADS  Google Scholar 

  30. K. R. Subbaswamy and G. D. Mahan, submitted to Phys. Rev. Letters.

    Google Scholar 

  31. A. B. Lidiard, Handbuch der Physik, Vol. 20, edited S. Flügge (Springer-Verlag, 1957 ) pg. 246–349.

    Google Scholar 

  32. A. D. Le Claire, Fast Ion Transport in Solids, ed. W. van Gool ( North-Holland, London, 1973 ) pg. 51.

    Google Scholar 

  33. G. D. Mahan, “Lattice Gas Theory of Ionic Conductivity”, submitted to Phys. Rev.

    Google Scholar 

  34. W. L. Roth, J. Solid State Chem. 4, 60 (1972).

    Article  ADS  Google Scholar 

  35. W. van Gool, J. Solid State Chem. 7 55 (1973).

    Article  ADS  Google Scholar 

  36. W. van Gool and P. H. Bottelberghs, J. Solid State Chem. 7 59 (1973).

    Article  ADS  Google Scholar 

  37. J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. Bll, 3535 (1975).

    Google Scholar 

  38. G. B. Whitham, Linear and Nonlinear Waves, (J. Wiley & Sons, New York, 1974 ).

    MATH  Google Scholar 

  39. A. Lenard, J. Math. Phys. 2., 682 (1969); 533 (1963).

    Article  MathSciNet  Google Scholar 

  40. H. Reik, Polarons in Ionic Crystals and Polar Semiconductors, ed. J. T. Devreese ( North-Holland, London, 1972 ) pg. 679–714.

    Google Scholar 

  41. C. P. Flynn, Point Defects and Diffusion (Oxford University Press, 1972 ).

    Google Scholar 

  42. G. D. Mahan and W. J. Pardee, Phys. Letters 49A, 325 (1974).

    Article  ADS  Google Scholar 

  43. S. Geller and P. M. Skarstad, Phys. Rev. Letters 33, 1484 (1974).

    Article  ADS  Google Scholar 

  44. J. N. Bradley and P. D. Greene, Trans. Faraday Soc. 62, 2069 (1966); ibid 63, 2516 (1967).

    Article  Google Scholar 

  45. R. D. Armstrong, R. S. Bulmer, and T. Dickinson, J. of Solid State Chem. 8, 219 (1973).

    Article  ADS  Google Scholar 

  46. T. Takahashi, O. Yamamoto, F. Matsuyama, and Y. Nöda, J. Solid State Chem. 16, 35 (1976).

    Article  ADS  Google Scholar 

  47. G. Eckold, K. Funke, J. Kalus, and R. E. Lechner, Phys. Letters 55A, 125 (1975).

    Article  ADS  Google Scholar 

  48. K. Funke, Phys. Letters A53, 215 (1975).

    Article  ADS  Google Scholar 

  49. C. Clemen and K. Funke, Berichte der Bunsen-Gesellschaft für Physikalische Chemie, 1119 (1975).

    Google Scholar 

  50. J. C. Wang, M. Gaffari, and S. Choi, J. Chem. Phys. 63, 772 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Mahan, G.D. (1976). Theoretical Issues in Superionic Conductors. In: Mahan, G.D., Roth, W.L. (eds) Superionic Conductors. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8789-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8789-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8791-0

  • Online ISBN: 978-1-4615-8789-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics