Skip to main content

Current Status of the Catalytic Decomposition of NO

  • Conference paper
The Catalytic Chemistry of Nitrogen Oxides

Abstract

Except at very high temperatures, NO is thermodynamically unstable relative to N2 and O2. Simple cleavage of the N-O bond is all that should be necessary for its decomposition. However, to date no solid catalyst has been developed that will effect this direct decomposition rapidly in an oxidizing atmosphere under relatively mild conditions. This paper will review the types of materials that have been tested, the factors that limit their activity, and the kinetics and mechanism of the reaction. Noble metals (mainly platinum, rhodium, and ruthenium) either in pure or alloyed states, as well as pure and mixed oxides (e.g. cobalt oxide, nickel oxide, zirconia, certain perovskites, etc.) will be discussed. It appears that most of these materials are active in a reduced state, but the oxygen released from the decomposed NO remains strongly attached to the surface and poisons the activity. High temperatures and/or gaseous reductants are required to remove the surface oxygen and regenerate the catalytic activity. Furthermore, oxygen from the gas phase competes with NO for the adsorption sites, and the kinetics over many of these catalysts can be adequately described by simple Langmuir-Hinshelwood kinetics involving competition between NO and O2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Nernst, Z. Anorg, u. Allgem. Chem. 49, 213 (1906).

    CAS  Google Scholar 

  2. K. Jellinek, Z. Anorg, u. Allgem. Chem. 49, 229 (1906).

    Google Scholar 

  3. C. S. Howard, B.S. Thesis in Chemistry, Worcester Polytechnic Institute, Worcester, Mass., 1918.

    Google Scholar 

  4. C. S. Howard and F. Daniels, J. Phys. Chem. 62, 360 (1958).

    Article  CAS  Google Scholar 

  5. National Academy of Sciences Report No. 93–24, Vol. I, prepared by the Coordinating Committee on Air Quality Standards for the Committee on Public Works, U.S. Senate, September, 1974.

    Google Scholar 

  6. M. Shelef and J. T. Kummer, Chemical Engineering Progress, Symposium Series 67 (no. 115), 74 (1971).

    CAS  Google Scholar 

  7. Physical and Thermodynamic Properties of Elements and Compounds, booklet prepared by Chemetron Corp., 1969.

    Google Scholar 

  8. W. G. Hendrickson and F. Daniels, Ind. and Eng. Chem. 45, 2613 (1953).

    Article  CAS  Google Scholar 

  9. H. Wise and M. F. Frech, J. Chem. Phys. 20, 22 (1952).

    Article  CAS  Google Scholar 

  10. J. P. Fraser and F. Daniels, J. Phys. Chem. 62, 215 (1958).

    Article  CAS  Google Scholar 

  11. E. L. Yuan, J. I. Slaughter, W. E. Koerner, and F. Daniels, J. Phys. Chem. 63, 952 (1959).

    Article  CAS  Google Scholar 

  12. F. R. Taylor, Air Pollution Foundation Report No. 28, 1959.

    Google Scholar 

  13. R. R. Sakaida, R. G. Rinker, Y. L. Wang, and W. H. Corcoran, AIChE Journal 7, 658 (1961).

    Article  CAS  Google Scholar 

  14. S. Sourirajan and J. L. Blumenthal, Proc. Second Inter. Congr. on Catalysis, Vol. II, p. 2521, Paris, 1960.

    Google Scholar 

  15. M. S. Peters, AEC Report No. TID-18423 (1963).

    Google Scholar 

  16. L. L. Wikstrom and K. Nobe, I & ECProc. Des. and Devel. 4, 191 (1965).

    Article  CAS  Google Scholar 

  17. T. M. Yur’eva, V. V. Popovskii, and G. K. Boreskov, Kinetika iKataliz 6, 1041 (1965).

    Google Scholar 

  18. E. R. S. Winter, J. Catal. 22, 158 (1971).

    Article  CAS  Google Scholar 

  19. K. J. Laidler, “Catalysis”, Vol I, P. H. Emmett, ed., p. 149, Reinhold, New York, 1954.

    Google Scholar 

  20. T. E. Green and C. N. Hinshelwood, J. Chem. Soc. 129, 1709 (1926).

    Article  Google Scholar 

  21. P. W. Bachman and G. B. Taylor, J. Phys. Chem. 33, 447 (1929).

    Article  CAS  Google Scholar 

  22. J. Zawadzki and G. Perlinski, Comptes Rend. 198, 260 (1934).

    CAS  Google Scholar 

  23. M. Shelef, K. Otto, and H. Gandhi, Atm. Environ. 3, 107 (1969).

    Article  CAS  Google Scholar 

  24. A. Amirnazmi, J. E. Benson, and M. Boudart, J. Catal. 30, 55 (1973).

    Article  CAS  Google Scholar 

  25. R. J. H. Voorhoeve, J. P. Remeika, and L. E. Trimble (submitted to Mat. Res. Bull.)

    Google Scholar 

  26. G. Mai, R. Siepmann, and F. Kummer, German Patent Appl. 2, 151, 958 (1973).

    Google Scholar 

  27. M. Shelef and H. S. Gandhi, Platinum Metals Rev. 18, 2 (1974).

    CAS  Google Scholar 

  28. T. P. Kobylinski and B. W. Taylor, J. Catal. 33, 376 (1974).

    Article  CAS  Google Scholar 

  29. K. C. Taylor and R. L. Klimisch (submitted to J. Catal).

    Google Scholar 

  30. S. W. Harris, E. F. Morello, and G. H. Peters, U.S. Patent 3,459, 494 (1969).

    Google Scholar 

  31. R. A. Ogg and J. D. Ray, U.S. Patent 2,684, 283 (1954).

    Google Scholar 

  32. D. M. Yost and H. Russell, “Systematic Inorg. Chem. of the Fifth and Sixth Group Nonmetallic Elements,” Prentice-Hall, New York, 1944.

    Google Scholar 

  33. C. N. Hinshelwood and C. R. Prichard, J. Chem. Soc. 127, 327 (1925).

    Article  CAS  Google Scholar 

  34. H. Wise and M. F. Freeh, J. Chem. Phys. 20, 1724 (1952).

    Article  CAS  Google Scholar 

  35. F. Kaufman and J. R. Kelso, J. Chem. Phys. 21, 751 (1953).

    Article  CAS  Google Scholar 

  36. M. Bodenstein, Z. Phys. Chem. 100, 106 (1922).

    Google Scholar 

  37. J. C. Treacy and F. Daniels, J. Am. Chem. Soc. 77, 2033 (1955).

    Article  CAS  Google Scholar 

  38. J. F. Roth and R. C. Doerr, Ind. & Eng. Chem. 53, 293 (1961).

    Article  CAS  Google Scholar 

  39. E. Muller and H. Barck, Z. Anorg. Chem. 129, 309 (1928).

    Google Scholar 

  40. A. Solbakken, Second Inter. Congr. on Catalysis, Vol. I, p. 341, Paris, 1960.

    Google Scholar 

  41. G. I. Golodets, Kinetika i Kataliz 6, 1123 (1965).

    CAS  Google Scholar 

  42. P. B. Weisz and C. D. Prater, Adv. in Catal. 4, 143 (1954).

    Google Scholar 

  43. H. C. Anderson, W. J. Green, and D. R. Steele, Ind. & Eng. Chem. 53, 199 (1961).

    Article  Google Scholar 

  44. J. H. Jones, J. T. Kummer, K. Otto, M. Shelef, and E. E. Weaver, Env. Sci. and Tech. 5, 790 (1971).

    Article  Google Scholar 

  45. H. C. Anderson, G. Cohn, W. J. Green, and D. R. Steele, French Patent 1, 205, 311 (1960).

    Google Scholar 

  46. H. C. Anderson and C. D. Keith, French Patent 1, 233, 712 (1960).

    Google Scholar 

  47. H. Schachner, Cobalt 9, 12 (1960).

    Google Scholar 

  48. G. K. Boreskov, Disc. Faraday Soc. 41, 263 (1966).

    Article  Google Scholar 

  49. G. K. Boreskov, Adv. in Catal. 15, 285 (1964).

    Google Scholar 

  50. A. Terenin and L. Roev, Second Inter. Congr. on Catalysis, Vol. II, p. 2183, Paris, 1960.

    Google Scholar 

  51. G. Blyholder and M. G. Allen, J. Phys. Chem. 69, 3998 (1965).

    Article  CAS  Google Scholar 

  52. M. Onchi and H. E. Farnsworth, Surf. Sci. 13, 425 (1969).

    Article  CAS  Google Scholar 

  53. W. M. H. Sachtler, Second Inter. Congr. on Catalysis, Vol. II, p. 2197 (1960).

    Google Scholar 

  54. A. Alexeyev and A. Terenin, J. Catal. 4, 440 (1965).

    Article  Google Scholar 

  55. Y.-H. Hu and J. W. Hightower (to be published).

    Google Scholar 

  56. G. W. Poling and R. P. Eischens, J. Electrochem. Soc. 113, 218 (1966).

    Article  CAS  Google Scholar 

  57. C. V. Sternling, Seminar at Rice University, September 7, 1972.

    Google Scholar 

  58. A. Lawson, J. Catal. 24, 297 (1972).

    Article  CAS  Google Scholar 

  59. V. Haensel, Fifth Inter. Congr. on Catalysis, Vol. I, p. xx, Palm Beach, 1972.

    Google Scholar 

  60. R. J. Slone, private communication, October 1, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this paper

Cite this paper

Hightower, J.W., Van Leirsburg, D.A. (1975). Current Status of the Catalytic Decomposition of NO. In: Klimisch, R.L., Larson, J.G. (eds) The Catalytic Chemistry of Nitrogen Oxides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8741-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8741-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8743-9

  • Online ISBN: 978-1-4615-8741-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics