Biochemical and Clinical Aspects

  • Larry Schneck


Lipids, with certain notable exceptions, may be operationally defined as organic-solvent-soluble, water-insoluble compounds. The three major classes of lipids in the central nervous system are cholesterol, glycerophospholipids, and sphingolipids. Sphingosines are 1,3-dihydroxy-2-amino-hydrocarbons that form a series of lipids by substitution on both the 1-hydroxyl and the amino groups. At present, more than 30 sphingosines and their hydroxy derivatives (phytosphingosines) have been recorded from natural lipids. The amino group of sphingosine is usually acylated with a long-chain (C14–C26) fatty acid. This amide, N-acylsphingosine, is generically known as ceramide. It is the backbone for the synthesis of sphingolipids. The different sphingolipids are formed when the terminal hydroxy group of ceramide is substituted with various compounds. In sphingomyelin, the primary hydroxy group of sphingosine is esterified with choline phosphate. The glycosphingolipids are sphingolipids with a sugar moiety attached through β-glycosidic linkage to the corresponding ceramide. Cerebroside is the generic term for a group of ceramide monohexosides. Ceramide glucose is known as glucocerebroside and ceramide galactose as galactocerebroside. The latter monohexoside is the major cerebroside in normal adult brain. Sulfatides are sulfuric acid esters of cerebrosides with the sulfate at the carbon atom 3 of the galactose moiety. Complex glycosphingolipids are ceramide glycosides containing more than one monosaccharide unit and are known as ceramide oligosaccharides. A ceramide dihexoside contains two sugar moieties; ceramide trihexoside, three sugars; ceramide tetrahexoside, four sugars; etc. The ceramide oligosaccharides may be partitioned into the neutral glycolipids and the gangliosides. The carbohydrate residues of the neutral glycolipids are important in various immunochemical reactions.1–3


Sialic Acid Brain Ganglioside Total Ganglioside Lipid Storage Disease Ally Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rapport, M. M., Graf, L., Skipski, P., and Alonzo, N. F., Immunochemical studies of organ and tumor lipids. VI. Isolation and properties of cytolipin, Cancer 12: 438 (1959).PubMedGoogle Scholar
  2. 2.
    Hakomori, S. J. and Jeanloz, R. W., Glycolipids as membrane antigens, in: Blood and Tissue Antigens, D. Aminoff, ed., Academic Press, New York, pp. 149–161 (1970).Google Scholar
  3. 3.
    Siddiqui, B. and Hakomori, S. J., A revised structure for the Forsmann glycolipid hapten, J. Biol. Chem. 246: 5766 (1971).PubMedGoogle Scholar
  4. 4.
    Penick, R. J., Meisler, M. H., and McCluer, R. H., Thin-layer chromatographic studies of human brain gangliosides, Biochim. Biophys. Acta 116: 279 (1966).PubMedGoogle Scholar
  5. 5.
    Svennerholm, L., Chromatographic separation of human brain gangliosides, J. Neurochem. 10: 613 (1963).PubMedGoogle Scholar
  6. 6.
    Folch-Pi, J., Lees, M., and Sloane-Stanley, G. H., A simple method for the isolation and purification of total lipides from animal tissue, J. Biol. Chem. 226: 497 (1957).Google Scholar
  7. 7.
    Kanfer, J. M. and Spielvogel, C., On the loss of gangliosides by dialysis, J. Neurochem. 20: 1483 (1973).PubMedGoogle Scholar
  8. 8.
    Rouser, G., Kritchevsky, G., and Yamamoto, A., Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids, in: Lipid Chromatographic Analysis, G. V. Marinetji, ed., Marcel Decker, New York, Vol. 1, pp. 99–161 (1967).Google Scholar
  9. 9.
    Suzuki, K., The pattern of mammalian brain gangliosides. II. Evaluation of the extraction procedures, post-mortem changes and the effect of formalin preservation, J. Neurochem. 12: 629 (1965).PubMedGoogle Scholar
  10. 10.
    Svennerholm, L., Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method, Biochim. Biophys. Acta 24: 604 (1957).PubMedGoogle Scholar
  11. 11.
    Warren, L., The thiobarbituric acid assay of sialic acids, J. Biol. Chem. 234: 197 (1959).Google Scholar
  12. 12.
    Hess, H. H. and Rolde, E., Flurometric assay of sialic acid in brain gangliosides, J. Biol. Chem. 239: 3215 (1964).PubMedGoogle Scholar
  13. 13.
    Yu, R. K. and Ledeen, R. W., Gas-liquid chromatographic assay of lipid-bound sialic acids: Measurement of gangliosides in brain of several species, J. Lipid Res. 11: 506 (1970).PubMedGoogle Scholar
  14. 14.
    Suzuki, K., A simple and accurate micromethod for quantitative determination of ganglioside patterns, Life Sci. 3: 1227 (1964).PubMedGoogle Scholar
  15. 15.
    Klenk, E., Uber die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehimlipoiden, Hoppe-Seyler’s Z. Physiol. Chem. 273: 76 (1942).Google Scholar
  16. 16.
    Suzuki, K., Poduslo, S. E., and Norton, W. T., Gangliosides in the myelin fraction of developing rats, Biochim. Biophys. Acta 144: 375 (1967).PubMedGoogle Scholar
  17. 17.
    Burton, R. M., Howard, R. E., Baer, S., and Balfour, Y. M., Gangliosides and acetylcholine of the central nervous system, Biochim. Biophys. Acta 84: 441 (1964).PubMedGoogle Scholar
  18. 18.
    Eichberg, J., Whittaker, V. P., and Dawson, R. M., Distribution of lipids in subcellular particles of guinea-pig brain, Biochim. J. 92: 91 (1964).Google Scholar
  19. 19.
    Derry, D. M. and Wolfe, L. S., Gangliosides in isolated nervous and glial cells, Science 158: 1450 (1967).Google Scholar
  20. 20.
    Norton, W. T. and Poduslo, S. E., Isolation and some properties of whole neuroglia and neuronal perikarya from rat brain, Fed. Proc. Fed. Am. Soc. Exp. Biol. 28: 734 1969.Google Scholar
  21. 21.
    Ledeen, R., Salsman, K., and Cabrera, M., Gangliosides of bovine adrenal medulla, Biochemistry 7: 2287 (1968).PubMedGoogle Scholar
  22. 22.
    Yamakawa, T. and Suzuki, S., The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. I. Concerning the ether-insoluble lipids of hyophilized horse blood stroma, J. Biochem. (Tokyo) 38: 199 (1951).Google Scholar
  23. 23.
    Klenk, H. D. and Choppin, P. W., Glycosphingolipids of plasma membranes of cultured cells and an enveloped virus (SV6) grown in these cells, Proc. Natl. Acad. Sci. U.S.A. 66: 57 (1970).PubMedGoogle Scholar
  24. 24.
    Renkonen, O., Gahmberg, C. G., Simons, K., and Kaariainen, L., Enrichment of gangliosides in plasma membranes of hamster kidney fibroblasts, Acta Chem. Scand. 24: 733 (1970).PubMedGoogle Scholar
  25. 25.
    Ledeen, R. and Yu, R. K., Gangliosides as constituents of nervous system membranes, in: Biological Diagnosis of Brain Disorders, S. Bogoch, ed., Spectrum, New York, pp. 247–257 (1973).Google Scholar
  26. 26.
    Suzuki, K., Formation and turnover of myelin gangliosides, J. Neurochem. 17: 209 (1970).PubMedGoogle Scholar
  27. 27.
    Suzuki, K., The pattern of mammalian brain gangliosides. III. Regional and developmental differences, J. Neurochem. 12: 969 (1965).Google Scholar
  28. 28.
    Vanier, M. T., Holm, M., Ohman, R., and Svennerholm, L., Developmental profiles of gangliosides in human and rat brain, J. Neurochem. 18: 581 (1971).PubMedGoogle Scholar
  29. 29.
    Rosenberg, A. and Stern, N., Changes in sphingosine and fatty acid components of the gangliosides in developing rat and human brain, J. Lipid Res. 7: 122 (1966).PubMedGoogle Scholar
  30. 30.
    Garrigan, O. W. and Chargaff, E., Studies on the mucolipids and the cerebrosides of chicken brain during embryonic development, Biochim. Biophys. Acta 70: 452 (1963).PubMedGoogle Scholar
  31. 31.
    Schneck, L., Adachi, M., and Volk, B. W., The fetal aspects of Tay-Sachs disease, Pediatrics 49: 342 (1972).PubMedGoogle Scholar
  32. 32.
    Naoi, M. and Klenk, E., The sphingosine bases of the gangliosides from developing human brain and from brains of amaurotic idiots, Hoppe-Seyler’s Z. Physiol. Chem. 353: 1677 (1972).Google Scholar
  33. 33.
    Avrova, N. F. and Zabelinskii, S. A., Fatty acids and long chain bases of vertebrate brain gangliosides, J. Neurochem. 18: 675 (1971).PubMedGoogle Scholar
  34. 34.
    Kishimoto, Y., Agranoff, B. W., Radin, N. S., and Burton, R. M., Comparisons of the fatty acids of lipids of subcellular brain fractions, J. Neurochem. 16: 397 (1969).PubMedGoogle Scholar
  35. 35.
    Feldman, G. L., Feldman, L. S., and Rouser, G. P., The isolation and partial characterization of ganglioside and ceramide polyhexosides from the lens of the human eye, Lipids 1: 4 (1966).Google Scholar
  36. 36.
    Svennerholm, L., Gangliosides and other glycolipids of human placenta, Acta Chem. Scand. 19: 1506 (1965).Google Scholar
  37. 37.
    Kaufman, B., Basu, S., and Roseman, S., Studies on the biosynthesis of gangliosides, in: Inborn Disorders of Sphingolipid Metabolism, B. W. Volk and S. M. Aronson, eds., Pergamon Press, New York, pp. 193–213 (1967).Google Scholar
  38. 38.
    Jourdian, G. W. and Roseman, S., Intermediary metabolism of sialic acid, Ann. N. Y. Acad. Sci. 106: 202 (1963).Google Scholar
  39. 39.
    Warren, L., Blacklow, R. S., and Spearing, C. W., Biosynthesis and metabolism of sialic acids, Ann. N. Y. Acad. Sci. 106: 191 (1963).PubMedGoogle Scholar
  40. 40.
    Svennerholm, L., Gangliosidoses, in: Handbook of Neurochemistry. III. Metabolic Reactions in the Nervous System, A. Lajtha, ed., Plenum Press, New York, pp. 425–452 (1970).Google Scholar
  41. 41.
    Burton, R. M., Glycolipid metabolism, in: Fundamentals of Lipid Chemistry, R. M. Burton and F. C. Guerra, eds., BI-Science, Webster-Groves, Mo., pp. 373–403 (1972).Google Scholar
  42. 42.
    Leibowitz, Z. and Gatt, S., Enzymatic hydrolyses of sphingolipids. VII. Hydrolysis of gangliosides by a neuraminidase from calf brain, Biochim. Biophys. Acta 152: 136 (1968).Google Scholar
  43. 43.
    Kuhn, R. and Wiegandt, H., Die Konstitution der Ganglio-N-tetraose und Gangliosids Gu Chem. Ber. 96: 866 (1963).Google Scholar
  44. 44.
    Schneck, L., Pinkett, B., and Volk, B. W., Asialo-GM2 ganglioside in fetal brain Tay-Sachs disease, J. Neurochem. 24: 183 (1974).Google Scholar
  45. 45.
    Sandhoff, K. and Jatzkewitz, H., The chemical pathology of Tay-Sachs disease, in: Sphingolipids, Sphingolipidoses and Allied Disorders, B. W. Volk and S. M. Aronson, eds. Plenum Press, New York, pp. 305–319 (1972).Google Scholar
  46. 46.
    Jatzkewitz, H., Pilz, H., and Sandhoff, K., The quantitative determination of gangliosides and their derivatives in different forms of amaurotic idiocy, J. Neurochem. 12: 135 (1965).PubMedGoogle Scholar
  47. 47.
    Gatt, S., Barenholz, Y., Borkovski-Kubiler, I., and Liebovitz, B. G., Interaction of enzymes with lipid substrates, in: Sphingolipids, Sphingolipidoses and Allied Disorders, B. W. Volk and S. M. Aronson. eds., Plenum Press, New York, pp. 237–256 (1972).Google Scholar
  48. 48.
    Burton, R. M., Biochemistry of sphingosine containing lipids, in: Lipids and Lipidoses, G. Schettler, ed., Springer-Verlag, Berlin, pp. 122–167 (1967).Google Scholar
  49. 49.
    Brady, R. O. and Mora, P. T., Alterations in ganglioside pattern and synthesis in SV40- and polyoma virus-transformed mouse cell lines, Biochim. Biophys. Acta 218: 308 (1970).Google Scholar
  50. 50.
    Dawson, G., Kemp, S. F., Stoolmiller, A. C., and Dorfman, A., Biosynthesis of glycosphingolipids by mouse neuroblastoma (NB41A), rat glia (RGC-6) and human glia (CHB-4) in cell culture, Biochem. Biophys. Res. Commun. 44: 687 (1971).PubMedGoogle Scholar
  51. 51.
    Hakomori, S. I., Teather, C., and Andrews, H., Organizational difference of cell surface “hematoside” in normal and virally transformed cells, Biochem. Biophys. Res. Commun. 33: 563 (1968).PubMedGoogle Scholar
  52. 52.
    Roseman, S., The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5: 270 (1970).PubMedGoogle Scholar
  53. 53.
    Van Heyningen, W. E., The fixation of tetanus toxin, strychnine, serotonin, and other substances by ganglioside, J. Gen. Microbiol. 31: 375 (1963).Google Scholar
  54. 54.
    Mcllwain, H., Polybasic and poly acidic substances as aggregates and the excitability of cerebral tissues electrically stimulated in vitro, Biochem. J. 90: 442 (1964).Google Scholar
  55. 55.
    Max, S. R., Maclaren, N. K., Brady, R. O., Fishman, P., Tallman, J., Garcia, J. H., Cornblath, M., Tanaka, J., Viloria, J. E., and Kamijyo, Y., GM3 gangliosidosis: A new lipid storage disease with a defect in ganglioside biosynthesis, presented at the 50th Annual Meeting of the American Association of Neuropathology, Boston, Mass., June 1974.Google Scholar
  56. 56.
    Landing, B. H., Silverman, F. N., Craig, M. M., Jacoby, M. D., Lahey, M. E., and Chadwick, D. L., Familial neurovisceral lipidosis, Am. J. Dis. Child. 108: 503 (1964).PubMedGoogle Scholar
  57. 57.
    Gonatas, N. K. and Gonatas, J., Ultrastructural and biochemical observations on a case of systemic late infantile lipidosis and its relationship to Tay-Sachs disease and gargoylism. J. Neuropathol. Exp. Neurol. 24: 318 (1965).PubMedGoogle Scholar
  58. 58.
    O’Brien, J. S., Stern, M. B., Landing, B. H., O’Brien, J. K., and Donneil, N. G., Generalized gangliosidosis. Another inborn error of ganglioside metabolism, Am. J. Dis. Child. 109: 338 (1965).PubMedGoogle Scholar
  59. 59.
    Derry, D. M., Fawcett, J. S., Andermann, F., and Wolfe, L. S., Late infantile systemic lipidosis. Major monosialogangliosidosis, delineation of two types, Neurology 18: 340 (1968).PubMedGoogle Scholar
  60. 60.
    Bernheimer, H. and Seitelberger, F., Über das Verhalten der Ganglioside im Gehirn bei 2 Fällen von spätinfantiler amaurotischer Idiotie, Wein Klin. Wochenschr. 80: 163 (1968).Google Scholar
  61. 61.
    Sandhoff, K., Andreae, U., and Jatzkewitz, H., Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs, Life Sci. 7: 283 (1968).PubMedGoogle Scholar
  62. 62.
    Suzuki, K., Suzuki, K., Rapin, I., Suzuki, Y., and Ishii, N., Juvenile GM2-gangliosidosis, Neurology 20: 190 (1970).PubMedGoogle Scholar
  63. 63.
    Schneck, L., Friedland, J., Pourfar, M., Saifer, A., and Volk, B. W., Hexosaminidase activities in a case of systemic GM2-gangliosidosis, Proc. Soc. Exp. Biol. Med. 133: 997 (1970).PubMedGoogle Scholar
  64. 64.
    Tay, W., Symmetrical changes in the region of the yellow spot in each eye of an infant, Trans. Ophthalmol. Soc. CJ. AT. 1: 155 (1881).Google Scholar
  65. 65.
    Sachs, B., A family form of idiocy, generally fatal associated with early blindness, J. Nerv. Ment. Dis. 21: 475 (1896).Google Scholar
  66. 66.
    Schneck, L., The clinical aspects of Tay-Sachs disease, in: Tay-Sachs Disease, B. W. Volk, ed., Grüne & Stratton, New York, pp. 16–35 (1964).Google Scholar
  67. 67.
    Cotlier, E., Tay-Sachs disease and Fabry’s disease: Clinical and chemical diagnosis of two metabolic eye diseases, Bull. N.Y. Acad. Med. 50: 777 (1974).PubMedGoogle Scholar
  68. 68.
    Pampiglione, G., Privett, G., and Harden, A., Tay-Sachs disease: Neurophysiological studies in 20 children, Dev. Med. Child. Neurol. 16: 201 (1974).PubMedGoogle Scholar
  69. 69.
    Tanaka, Y., Taguchi, K., and Arayama, T., Auditory responses in Tay-Sachs disease, Pract. Oto-Rhino-Laryngol. 31: 46 (1969).Google Scholar
  70. 70.
    Jampel, R. S. and Quaglio, N. D., Eye movements in Tay-Sachs disease, Neurology 14: 1013 (1964).PubMedGoogle Scholar
  71. 71.
    Schneck, L., The eaarly electroencephalographic and seizure characteristics of Tay-Sachs disease, Acta Neurol. Scand. 41: 163 (1965).PubMedGoogle Scholar
  72. 72.
    Bernheimer, H., Ganglioside im Liquor cerebrospinalis und Tay-Sachssche Erkrankung, Klin. Wochenschr. 46: 258 (1968).PubMedGoogle Scholar
  73. 73.
    Rodriguez-Torres, R., Schneck, L., and Kleinberg, W., Electrocardiographic and biochemical abnormalities in Tay-Sachs disease, Bull. N.Y. Acad. Med. 47: 717 (1971).PubMedGoogle Scholar
  74. 74.
    Desnick, R. J., Snyder, P. D., Desnick, S. J., Krivit, W., and Sharp, H. L., Sandhoff’s disease: Ultrastructural and biochemical studies, in: Sphingolipids, Sphingolipidoses and Allied Disorders, B. W. Volk and S. M. Aronson, eds., Plenum Press, New York, pp. 351–371 (1972).Google Scholar
  75. 75.
    Kolodny, E. H., Sandhoff’s disease: Studies on the enzyme defect in homozygotes and detection of heterozygotes, in: Sphingolipids, Sphingolipidoses and Allied Disorders, B. W. Volk and S. M. Aronson, eds., Plenum Press, New York, pp. 321–341 (1972).Google Scholar
  76. 76.
    Volk, B. W., Adachi, M., Schneck, L., Saifer, A., and Kleinberg, W., G5-ganglioside variant of systemic late infantile lipidosis. Generalized gangliosidosis, Arch. Pathol. 87: 393 (1969).PubMedGoogle Scholar
  77. 77.
    Menkes, J. H., O’Brien, J. S., Okada, S., Grippo, J., Andrews, J. M., and Cancilla, P. A., Juvenile GM2 gangliosidosis. Biochemical and ultrastructural studies on a new variant of Tay-Sachs disease, Arch. Neurol. (Chicago) 25: 14 (1971).Google Scholar
  78. 78.
    Dacremont, G. and Kint, J. A., GM1-ganglioside accumulation and beta-galactoside deficiency in a case of GM1-gangliosidosis (Landing disease), Clin. Chim. Acta 21: 421 (1968).PubMedGoogle Scholar
  79. 79.
    Taori, G. M., Basu, D. K., Chandi, S., Raman, P. T., Abraham, J., Leelavathy, R., and Job, C. K., GM1 Gangliosidosis, J. Neurol. Sci. 21: 77 (1974).PubMedGoogle Scholar
  80. 80.
    O’Brien, J. S., Ganglioside storage diseases, in: Advances in Human Genetics, H. Harris and K. Hirschhorn, eds., Plenum Press, New York, Vol. 3, pp. 39–98 (1972).Google Scholar
  81. 81.
    Schneck, L., Amsterdam, D., Brooks, S. E., Rosenthal, A., and Volk, B. W., The Tay-Sachs disease fibroblast model: Failure to respond to exogenous hexosaminidase A, Pediatrics 52: 221 (1973).PubMedGoogle Scholar
  82. 82.
    Schneck, L., Friedland, J., Valenti, C., Adachi, M., Amsterdam, D., and Volk, B. W., Prenatal diagnosis of Tay-Sachs disease, Lancet 1: 582 (1970).PubMedGoogle Scholar
  83. 83.
    O’Brien, J. S., Okada, S., Fillerup, D. L., Veath, B., Adornato, B., Brenner, P. H., and Leroy, J., Tay-Sachs disease: Prenatal diagnosis, Science 172: 61 (1971).PubMedGoogle Scholar
  84. 84.
    Yabuuchi, H., Sumi, K., Kurachi, K., and Hanai, J., Studies on cerebral lipidosis. Prenatal diagnosis of Tay-Sachs disease, Acta Paediatr. Jpn. Overseas Ed. 13: 13 (1971).Google Scholar
  85. 85.
    Lowden, J. A., Cutz, E., Conen, P. E., Rudd, N., and Doran, T. A., Prenatal diagnosis of GM1-gangliosidosis, New Engl. J. Med. 288: 225 (1973).PubMedGoogle Scholar
  86. 86.
    Kaback, M. M., Sloan, H. R., Sonneborn, M., Herndon, R. M., and Percy, A. K., GM1-Gangliosidosis type I: In utero detection and fetal manifestations, J. Pediatr. 82: 1037 (1973).PubMedGoogle Scholar
  87. 87.
    Eeg-Olofsson, L., Kristensson, K., Sourander, P., and Svennerholm, L., Tay-Sachs disease: A generalized metabolic disorder, Acta Paediatr. Scand. 55: 546 (1966).PubMedGoogle Scholar
  88. 88.
    Sandhoff, K., Harzer, K., Wassle, W., and Jatzkewitz, H., Enzyme alterations and lipid storage in three variants of Tay-Sachs disease, J. Neurochem. 18: 2469 (1971).PubMedGoogle Scholar
  89. 89.
    Suzuki, K., Suzuki, K., and Kamoshita, S., Chemical pathology of GM1-gangliosidosis (generalized gangliosidosis), J. Neuropathol. Exp. Neurol. 28: 25 (1969).PubMedGoogle Scholar
  90. 90.
    Suzuki, Y., Jacob, J. C., Suzuki, K., Kutty, K. M., and Suzuki, K., GM2-Gangliosidosis with total hexosaminidase deficiency, Neurology 21: 313 (1971).PubMedGoogle Scholar
  91. 91.
    Brunngraber, E. G., Brown, B. D., and Aro, A., Glycoproteins in brain tissues of the Ovariant of GM2-gangliosidosis, J. Neurochem. 22: 125 (1974).PubMedGoogle Scholar
  92. 92.
    Snyder, P. D., Krivit, W., and Sweeley, C. C., Generalized accumulation of neutral glycosphingolipids with GM2 ganglioside accumulation in the brain, J. Lipid Res. 13: 128 (1972).PubMedGoogle Scholar
  93. 93.
    Patton, V. M. and Dekaban, A. S., GM1-gangliosidosis and juvenile cerebral lipidosis, Arch. Neurol. (Chicago) 24: 529 (1971).Google Scholar
  94. 94.
    Okada, S. and O’Brien, J. S., Generalized gangliosidosis: Beta-galactosidase deficiency, Science 160: 1002 (1968).PubMedGoogle Scholar
  95. 95.
    Wolfe, L. S., Callahan, J., Fawcett, J. S., Andermann, F., and Scriver, C. R., GM1 gangliosidosis without chondrodystrophy or visceromegaly, Neurology 20: 23 (1970).PubMedGoogle Scholar
  96. 96.
    Dawson, G., Glycosphingolipid abnormalities in liver from patients with glycosphingolipid and mucopolysaccharide storage diseases, in: Sphingolipids, Sphingolipidoses and Allied Disorders, B. W. Volk and S. M. Aronson, eds., Plenum Press, New York, pp. 395–413 (1972).Google Scholar
  97. 97.
    Wolfe, L. S., Clarke, J. T. R., and Senior, R. G., Biochemical studies on GM1-gangliosi dosis and ceramide trihexosidosis, in: Sphingolipids, Sphingolipidoses and Allied Disorders, B. W. Volk and S. M. Aronson, eds., Plenum Press, New York, pp. 373–384 (1972).Google Scholar
  98. 98.
    Suzuki, Y., Crocker, A. C., and Suzuki, K., GM1-gangliosidosis: Correlation of clinical and biochemical data, Arch. Neurol (Chicago) 24: 58 (1971).Google Scholar
  99. 99.
    Eto, Y. and Suzuki, K., Fatty acid composition of cholesterol esters in brains of patients with Schilder’s disease, GM1-gangliosidosis and Tay-Sachs disease, and its possible relationship to the beta-position fatty acids of lecithin, J. Neurochem. 18: 1007 (1971).PubMedGoogle Scholar
  100. 100.
    Kolodny, E. H., Brady, R. O., and Volk, B. W., Demonstration of an alteration of ganglioside metabolism in Tay-Sachs disease, Biochem. Biophys. Res. Commun. 37: 526 (1969).PubMedGoogle Scholar
  101. 101.
    Okada, S. and O’Brien, J., Tay-Sachs disease: Generalized absence of a beta-D-N-acetylhexosaminidase component, Science 165: 698 (1969).PubMedGoogle Scholar
  102. 102.
    Sandhoff, K., The hydrolysis of Tay-Sachs ganglioside (TSG) by human N-acetyl-beta-D-hexosaminidase A, FEBS Lett. 11: 342 (1970).PubMedGoogle Scholar
  103. 103.
    Tallman, J. F., Johnson, W. G., and Brady, R. O., The metabolism of Tay-Sachs ganglioside: Catabolic studies with lysosomal enzymes from normal and Tay-Sachs brain tissue, J. Clin. Invest. 51: 2339 (1972).PubMedGoogle Scholar
  104. 104.
    Adachi, M., Torii, J., Schneck, L., and Volk, B. W., The fine structure of fetal Tay-Sachs disease, Arch. Pathol. 91: 48 (1971).PubMedGoogle Scholar
  105. 105.
    Wenger, D. A., Okada, S., and O’Brien, J. S., Studies on the substrate specificity of hexosaminidase A and B from liver, Arch. Biochem. Biophys. 153: 116 (1972).PubMedGoogle Scholar
  106. 106.
    Goldstone, A., Konecny, P., and Koenig, H., Lysosomal hydrolases: Conversion of acidic to basic forms by neuraminidase, FEBS Lett. 13: 68 (1971).PubMedGoogle Scholar
  107. 107.
    Tallman, J. F., Brady, R. P., Quirk, J. M., Villalba, M., and Gal, A. E., Isolation and relationship of human hexosaminidases, J. Biol. Chem. 249: 3489 (1974).PubMedGoogle Scholar
  108. 108.
    MacBrinn, M. D., Okada, S., Ho, M. W., Hu, C. C., and O’Brien, J. S., Generalized gangliosidoses: Impaired cleavage of galactose from a mucopolysaccharide and a glycoprotein, Science 163: 949 (1969).Google Scholar
  109. 109.
    Ho, M. W. and O’Brien, J. S., Differential effect of chloride ions on beta-galactosidase isoenzymes: A method for separate assay, Clin. Chim. Acta 32: 443 (1971).PubMedGoogle Scholar
  110. 110.
    Talley, P. A., Rattazzi, M. C., and Shows, T. B., Human beta-D-N-acetyl-hexoaminidases A and B: Expression and linkage relationships in somatic cell hybrids, Proc. Natl. Acad. Sci. U.S.A. 71: 1569 (1974).Google Scholar
  111. 111.
    Srivastava, S. K. and Beutler, E., Studies on human beta-D-N-acetyl-hexosaminidases. III. Biochemical genetics of Tay-Sachs and Sandhoff’s diseases, J. Biol. Chem. 249: 2054 (1974).PubMedGoogle Scholar
  112. 112.
    Murphy, J. V., Wolfe, H. J., Balazs, E. A., and Moser, H. W., A patient with deficiency of arylsulfatases A, B, C, and steroid sulfatase, associated with storage of sulfatide, cholesterol sulfate and glycosaminoglycans, in: Lipid Storage Diseases, J. Bernsohn and H. Grossman, eds., Academic Press, New York, pp. 67–109 (1971).Google Scholar
  113. 113.
    Galjaard, H., Hoogeveen, A., de Wit-Verbeek, H. A., Reuser, A. J. J., Keljzer, W., Westerveld, A., and Bootsma, D., Tay-Sachs and Sandhoff’s disease: Intergenic complementation after somatic cell hybridization, Expt. Cell Res. 87: 444 (1974).Google Scholar
  114. 114.
    Navon, R., Padeh, B., and Adam, A., Apparent deficiency of hexosaminidase A in healthy members of a family with Tay-Sachs disease, Am. J. Hum. Genet. 25: 287 (1973).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Larry Schneck
    • 1
    • 2
  1. 1.Kingsbrook Jewish Medical CenterUSA
  2. 2.Downstate Medical CenterState University of New YorkBrooklynUSA

Personalised recommendations