Skip to main content

Point Defects in Oxides

  • Chapter
Defects and Transport in Oxides

Part of the book series: Battelle Institute Materials Science Colloquia ((BIMSC))

Abstract

This article describes recent progress with the calculation of the structure, energy, and other characteristics of point defects and their simple aggregates in ionic crystals and oxides. Current approaches to the construction of physical models and to their mathematical evaluation are briefly reviewed. Recent results obtained at Harwell by means of Norgett′s HADES program for ionic crystals are described, particular emphasis being given to the understanding of defect structure and other properties in lattices with the fluorite structure (alkaline-earth fluorides and UO2) which these results provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For comprehensive accounts see, e.g., Kröger, F. A., The Chemistry of Imperfect Crystals, North Holland Publishing Co., Amsterdam (1964);

    Google Scholar 

  2. 1a. Adda, Y., and Philibert, J., La Diffusion dans les Solides, Presses Universitaires de France, Paris (1966);

    Google Scholar 

  3. 1b. Flynn, C. P., Point Defects and Diffusion, Clarendon Press, Oxford (1972).

    Google Scholar 

  4. See, e.g., Lidiard, A. B., J. Nucl Mat, 19, 106 (1966);

    Article  CAS  Google Scholar 

  5. 2a. Kröger, F. A., Z. Phys. Chem., 49, 178 (1966);

    Article  Google Scholar 

  6. 2b. Thorn, R. J., and Winslow, G. H., J. Chem. Phys., 44, 2632 (1966);

    Article  CAS  Google Scholar 

  7. 2c. Atlas, L. M., J. Phys. Chem Solids, 29, 1349 (1968);

    Article  CAS  Google Scholar 

  8. 2d. Atlas, L. M., The Chemistry of Extended Defects in Non-Metallic Solids, L. R. Eyring and M. O′Keeffe (Eds.), North Holland Publishing Co., Amsterdam (1970), p. 425.

    Google Scholar 

  9. See Harding, B. C, and Price, D. M., Phil. Mag., 26, 253 (1972),

    Article  CAS  Google Scholar 

  10. 3a. and Wuensch, B. J., Steele, W. C., and Vasilos, Y., J. Chem. Phys., 58, 5258 (1973).

    Article  CAS  Google Scholar 

  11. Willis, B.T.M., Proc. Brit. Ceram. Soc, 1, 9 (1964).

    Google Scholar 

  12. Mott, N. F., and Littleton, M. J., Trans. Faraday Soc., 34, 485 (1938).

    Article  CAS  Google Scholar 

  13. Huntington, H. B., and Seitz, F., Phys. Rev., 61, 315 (1942);

    Article  CAS  Google Scholar 

  14. 6a. Huntington, H. B., Phys. Rev., 61, 325 (1942).

    Article  CAS  Google Scholar 

  15. Lidiard, A. B., and Norgett, M. J., Computational Solid State Physics, F. Herman, N. W. Dalton, and T. R. Koehler (Eds.), Plenum Press, New York and London (1972), p. 385.

    Chapter  Google Scholar 

  16. Catlow, C.R.A., J. Phys., C6, L64 (1973).

    Google Scholar 

  17. Catlow, C.R.A., and Norgett, M. J., J. Phys., C6, 1325 (1973); also J. Phys. (Paris), 34, Colloque C-9, 45 (1973).

    Google Scholar 

  18. Catlow, C.R.A., D. Phil. thesis, University of Oxford (1973).

    Google Scholar 

  19. This section summarizes and brings up to date the fuller discussion contained in ref. 7. Additional background material will be found in the earlier reviews by Ban, L. W., and Lidiard, A. B., Physical Chemistry -An Advanced Treatise, W. Jost (Ed.), Academic Press, New York and London (1970), Vol. X, p. 152,

    Google Scholar 

  20. 11a. and by Hardy, J. R., and Flocken, J. W., C.R.C. Critical Reviews in Solid State Sciences, 1, 605 (1970),

    Article  Google Scholar 

  21. 11b. as well as in the recent article by Corish, J., and Jacobs, P.W.M.,Chemical Society Specialist Periodical Reports (Surface and Defect Properties of Solids) (1973), Vol. 2, Chap. 7.

    Google Scholar 

  22. For a general discussion see Torrens, I. M., Interatomic Potentials, Academic Press, New York and London (1972).

    Google Scholar 

  23. See, e.g., the papers by Johnson, R. A., and Wilson, W. D., and by Perrin, R. C., Englert, A., and Bullough, R., in Interatomic Potentials and Simulation of Lattice Defects, P. C. Gehlen, J. R. Beeler, and R. I. Jaffee (Eds.), Plenum Press, New York and London (1972), pp. 301 and 509, respectively.

    Chapter  Google Scholar 

  24. See, e.g., Seitz, F., Modern Theory of Solids, especially Chap. II, McGraw Hill, New York and London (1940).

    Google Scholar 

  25. Fumi, F. G., and Tosi, M. P., J. Phys. Chem. Solids, 25, 31 (1964); Tosi, M. P., and Fumi, F. G., ibid, p. 45.

    Article  CAS  Google Scholar 

  26. See, e.g., the reviews by Bilz, H., Computational Solid State Physics, F. Herman, N. W. Dalton, and T. R. Koehler (Eds.), Plenum Press, New York and London (1972), p. 309,

    Chapter  Google Scholar 

  27. 16a. or by Cochran, W., C.R.C Reviews in Solid State Sciences, 2, 1 (1971).

    Article  CAS  Google Scholar 

  28. See Karo, A. M., and Hardy, J. R., Phys. Rev., B3, 3418 (1971);

    Google Scholar 

  29. 17a. Schulze, P. D., and Hardy, J. R.,Phys. Rev., B5, 3270 (1972) and B6, 1580 (1972), and references cited there.

    Article  Google Scholar 

  30. Faux, I. D., J. Phys., C4, L211 (1971).

    Google Scholar 

  31. Faux, I. D., Ph.D. thesis, University of London (1971).

    Google Scholar 

  32. Müller, M., and Norgett, M. J., J. Phys., C5, L256 (1972); J. Phys. (Paris), 34, Colloque C-9, 159 (1973).

    Google Scholar 

  33. Catlow, C.R.A., Faux, I. D., and Norgett, M. J., unpublished work (1973).

    Google Scholar 

  34. Kanzaki, H., J. Phys. Chem Solids, 2, 24 and 37 (1957).

    Article  Google Scholar 

  35. Tewary, V. K., AERE Report T.P. 388 (1969) and Advances in Physics, 22, 757 (1973);

    CAS  Google Scholar 

  36. 23a. see also Bullough, R., and Tewary, V. K., Interatomic Potentials and Simulation of Lattice Defects, P. C. Gehlen, J. R. Beeler, and R. I. Jaffee (Eds.), Plenum Press, New York and London (1972), p. 155.

    Chapter  Google Scholar 

  37. See, e.g., Maradudin, A. A., Rep. Prog. Phys., 28, 331 (1965).

    Article  Google Scholar 

  38. See, e.g., the reviews by Fletcher, R., Comp. Phys. Commun., 3, 159 (1972),

    Article  Google Scholar 

  39. 25a. and by Powell, M.J.D., Mathematical Programming, 1, 26 (1971).

    Article  Google Scholar 

  40. Fletcher, R., and Reeves, C. M., Comput. J., 7, 149 (1964).

    Article  Google Scholar 

  41. Norgett, M. J., and Fletcher, R., J. Phys., C3, L190 (1970).

    Google Scholar 

  42. Norgett, M. J., Perrin, R. C., and Savino, E. J., J. Phys., F2, L73 (1972).

    Article  Google Scholar 

  43. Sinclair, J. E., and Fletcher, R., AERE Report T.P.540; J. Phys., C, in press.

    Google Scholar 

  44. Faux, I. D., and Lidiard, A. B., Z. Naturforsch., 26a, 62 (1971).

    Google Scholar 

  45. See, e.g., Barr, L. W., and Lidiard, A. B., ref. 11.

    Google Scholar 

  46. See, e.g., Hayes, W. (Ed.), Crystals With the Fluorite Structure, Clarendon Press, Oxford (1974).

    Google Scholar 

  47. Felix, F., J. Phys. (Paris), 34, Colloque C-9, 149 (1973).

    Article  Google Scholar 

  48. Lidiard, A. B., Pure and Appl. Chem., in press.

    Google Scholar 

  49. See, e.g., the review of thermodynamic properties by Roberts, L.E.J., and Markin, T. C., Proc. Brit. Ceram. Soc., 8, 201 (1967);

    Google Scholar 

  50. 35a. the analysis of anelastic relaxation modes by Socino, G., de Batist, R., and Gevers, R., Proc. Brit. Ceram. Soc., 9, 73 (1967);

    Google Scholar 

  51. 35b. and the calculations of correlation factors for oxygen diffusion by de Bruin, H. J., and Murch, G. E., Phil. Mag., 27, 1475 (1973).

    Article  Google Scholar 

  52. Cheetham, A. K., Fender, B.E.F., and Cooper, M. J., J. Phys., C4, 3107 (1971);

    Google Scholar 

  53. 36a. Steele, D., Childs, P. E., and Fender, B.E.F., J. Phys., C5, 2677 (1972).

    Google Scholar 

  54. Yamashita, J., and Kurosawa, T., J. Phys. Soc. Japan, 9, 944 (1954).

    Article  CAS  Google Scholar 

  55. Boswarva, I. M., and Franklin, A. D., Mass Transport in Oxides, J. B. Wachtman and A. D. Franklin (Eds.), National Bureau of Standards, Washington (1968), p. 25.

    Google Scholar 

  56. Tharmalinagam, K., Phil. Mag., 23, 181 (1971).

    Google Scholar 

  57. Dickens, P. G., Heckingbottom, R., and Linnett, J. W., Trans. Faraday Soc., 64, 1489 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lidiard, A.B. (1974). Point Defects in Oxides. In: Seltzer, M.S., Jaffee, R.I. (eds) Defects and Transport in Oxides. Battelle Institute Materials Science Colloquia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8723-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8723-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8725-5

  • Online ISBN: 978-1-4615-8723-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics