Skip to main content

Neuromuscular Transmission—Enzymatic Destruction of Acetylcholine

  • Chapter
Book cover The Peripheral Nervous System

Abstract

The action of acetylcholine (ACh) at peripheral junctions was postulated, from an early stage of its study, to be terminated by its destruction by a specific enzyme (Dale, 1914; Loewi and Navratil, 1926; Eccles, 1937; Marnay and Nachmansohn, 1938). Two main classes of ChE* in nervous tissue have since been described in detail, AChE and BuChE; however, this should be regarded as a broad classification only, since a variety of closely related types actually occur in various sources (Augustinsson, 1963; Usdin, 1970). Both classes split ACh, but AChE does so at a much faster rate than it splits choline esters of butyric or higher acids. BuChE cleaves a wide range of choline esters, with butyrylcholine hydrolysis the fastest. A convenient practical distinction is the high capacity of AChE, but not of BuChE, to hydrolyze acetyl-ß-methyl-choline. Both types also act, more slowly, on some noncholine esters, but ChE enzymes are also distinguished from nonspecific carboxylic esterases by the inhibition of ChE by eserine at 10− 5 M concentration. These distinctions, and their complications and species differences, are reviewed in detail by Augustinsson (1963) and Usdin (1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ChE:

Cholinesterase (all types)

AChE:

acetylcholinesterase

BuChE:

butyrylcholinesterase

DFP:

diisopropyl fluorophosphate

EM:

electron microscope

PAM:

pyridine-2-aldoxime methiodide

BW 284C51:

1:5-bis (4-allylmethylammonium phenyl)-pentane-3-one diiodide

References

  • Albuquerque, E. X., and Adler, M., 1974, unpublished observations.

    Google Scholar 

  • Albuquerque, E. X., Barnard, E. A., Porter, C. W., and Warnick, J. E., 1974, The density of acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle endplates, Proc. Nat. Acad. Sci. U.S.A. (in press).

    Google Scholar 

  • Albuquerque, E. X., Sokoll, M. D., Sonesson, B., and Thesleff, S., 1968, Studies on the nature of the cholinergic receptor, Europ. J. Pharmacol. 4:40.

    CAS  Google Scholar 

  • Augustinsson, K.-B., 1963, Classification and comparative enzymology of the cholinesterases, and methods for their determination, in: Handbuch der Experimentellen Pharmakologie, Vol. 15 (G. B. Koelle, ed.), pp. 89–128, Springer-Verlag, Berlin.

    Google Scholar 

  • Austin, L., and Berry, W. K., 1953, Two competitive inhibitors of Cholinesterase, Biochem. J. 54:695.

    PubMed  CAS  Google Scholar 

  • Barnard, E. A., 1970, Location and measurement of enzymes in single cells by isotopic methods. I Principles and light microscope applications, Internat. Rev. Cytol. 29:213.

    CAS  Google Scholar 

  • Barnard, E. A., Dolly, O. J., Porter, C. W., and Albuquerque, E. X., 1974, The acetylcholine receptor and the ionic conductance modulation system. Fed. Proc. (in press).

    Google Scholar 

  • Barnard, E. A., and Ostrowski, K., 1961, Application of isotopically-labelled specific inhibitors as a method in enzyme cytochemistry, Exptl. Cell Res. 25:465.

    PubMed  Google Scholar 

  • Barnard, E. A., and Rogers, A. W., 1967, Determination of the number, distribution and some in situ properties of Cholinesterase molecules in the motor endplate, using labelled inhibitor methods, Ann. N.Y. Acad. Sci. 144:584.

    CAS  Google Scholar 

  • Barnard, E. A., and Wieckowski, J., 1970, The autoradiographic approach to receptor systems and its application to some components of cholinergic junctions, in: Fundamental Concepts in Drug-Receptor Interactions (J. F. Danielli, J. F, Moran, and D. J. Triggle, eds.), pp. 229–242, Academic Press, New York.

    Google Scholar 

  • Barnard, E. A., Rymaszewska, T., and Wieckowski, J., 1971a, Cholinesterases at individual neuromuscular junctions, in: Cholinergic Ligand Interactions (D. J. Triggle, J. F. Moran, and E. A. Barnard, eds.), pp. 175–200, Academic Press, New York.

    Google Scholar 

  • Barnard, E. A., Wieckowski, J., and Chiu, T. H., 1971b, Cholinergic receptor molecules and Cholinesterase molecules at skeletal muscle junctions, Nature 234:207.

    CAS  Google Scholar 

  • Barnard, E. A., Chiu, T. H., Jedrejczyk, J. Porter, C. W., and Wieckowski, J., 1972, Acetylcholine receptor and Cholinesterase molecules of vertebrate skeletal muscles and their nerve junctions, in: Drug Receptors (H. P. Rang, ed.) pp. 225–240, Macmillan, London.

    Google Scholar 

  • Barnes, J. M., and Duff, J. I., 1953, The role of Cholinesterase at the myoneural junction, Brit. J. Pharmacol. 8:334.

    PubMed  CAS  Google Scholar 

  • Barnett, R. J., 1962, The fine structural localization of acetylcholinesterase at the myoneural junction, J. Cell Biol. 12:247.

    Google Scholar 

  • Barstad, J. A. B., 1956, The effect of di-isopropylfluorophosphate on the neuromuscular transmission and the the importance of Cholinesterase for the transmission of single impulses, Arch. Int. Pharmacodyn. 107:21.

    PubMed  CAS  Google Scholar 

  • Barstad, J. A. B., 1960, Cholinesterase inhibition and the effect of anticholinesterases on indirectly evoked single and tetanic muscle contractions in the phrenic nerve-diaphragm preparation from the rat, Arch. Int. Pharmacodyn. 128:143.

    PubMed  CAS  Google Scholar 

  • Barstad, J. A. B., 1962, Presynaptic effect of the neuromuscular transmitter, Experientia 18:579.

    PubMed  CAS  Google Scholar 

  • Barter, R., Danielli, J. F., and Davies, H. G., 1956, A quantitative cytochemical method for estimating alkaline phosphatase activity, Proc. Roy. Soc. Lond. B 144:412.

    Google Scholar 

  • Bergmann, R. A., Ueno, H., Morizono, R., Hanker, J. S., and Seligman, A. M., 1967, Ultrastructural demonstration of acetylcholinesterase activity of motor endplates via osmophilic diazothioethers, Histochemie 11:1.

    Google Scholar 

  • Betz, W., and Sakmann, B., 1971, “Disjunction” of frog neuromuscular synapses by treatment with proteolytic enzymes, Nature 232:94.

    CAS  Google Scholar 

  • Blaber, L. C., and Christ, D. D., 1967, The action of facilitatory drugs in the isolated tenuissimus muscle of the cat, Internat. J. Neuropharmacol. 6:473.

    CAS  Google Scholar 

  • Bloom, F. E., and Aghajanian, G. K., 1968, Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid, J. Ultrastruct. Res. 22:361.

    PubMed  CAS  Google Scholar 

  • Brzin, M., and Majcen-Tkacev, Z., 1963, Cholinesterase in denervated endplates and muscle fibers, J. Cell Biol. 19:349.

    PubMed  CAS  Google Scholar 

  • Brzin, M., and Zajicek, J., 1958, Quantitative determination of Cholinesterase activity in individual endplates of normal and denervated gastrocnemius, Nature 181:626.

    PubMed  CAS  Google Scholar 

  • Brzin, M., and Zeuthen, E., 1961, Quantitative evaluation of the thiocholine method for Cholinesterase as applied to single endplates from mouse gastrocnemius muscle, Compt. Rend. Lab. Carlsberg 32:139.

    CAS  Google Scholar 

  • Buckley, G. A., and Heaton, J., 1968, A quantitative study of cholinesterases in myoneural junctions from rat and guinea-pig extraocular muscles, J. Physiol. 199:743.

    PubMed  CAS  Google Scholar 

  • Buckley, G. A., and Nowell, P. T., 1966, Micro-colorimetric determination of Cholinesterase activity of motor endplates in the rat diaphragm, J. Pharm. Pharmacol. 18:146S (Suppl.).

    Google Scholar 

  • Budd, G. C., 1970, Location and measurement of enzymes in single cells by isotopic methods. Part II. Electron microscope applications, Internat. Rev. Cytol. 29:244.

    Google Scholar 

  • Couteaux, R., and Nachmansohn, D., 1940, Changes of Cholinesterase at endplates of voluntary muscle following section of sciatic nerve, Proc. Soc. Exptl. Biol. 43:177.

    CAS  Google Scholar 

  • Dale, H. H., 1914, The action of certain esters and ethers of choline, and their relation to muscarine, J. Pharmacol. Exptl. Therap. 6:147.

    CAS  Google Scholar 

  • Davis, D. A., Wasserkrug, H. L., Heyman, I. A., Padmanabhan, K. C., Seligman, G. A., Plapinger, R. E., and Seligman, A. M., 1972, Comparison of ultrastructural Cholinesterase demonstration in the motor endplate with ±-acetylthiol-m-toluenediazonium ion and 3-acetoxy-5-indolediazonium ion, J. Histochem. Cytochem. 20:161.

    PubMed  CAS  Google Scholar 

  • Davis, R., and Koelle, G. B., 1967, Electron microscopic localization of acetylcholinesterase and nonspecific Cholinesterase at the neuromuscular junction by the goldthiocholine and gold-thiolacetic acid methods, J. Cell Biol. 34:157.

    PubMed  CAS  Google Scholar 

  • De Robertis, E., and Fiszer de Plazas, S., 1970, Acetylcholinesterase and acetylcholine proteolipid receptor: Two different components of electroplax membranes, Biochim. Biophys. Acta 219:388.

    PubMed  Google Scholar 

  • De Robertis, E., Azcurra, J. M., and Fiszer, S., 1967, Ultrastructure and cholinergic binding capacity of junctional complexes isolated from rat brain, Brain Res. 5:45.

    Google Scholar 

  • Eccles, J. C., 1937, Synaptic and neuro-muscular transmission, Physiol. Rev. 17:538.

    Google Scholar 

  • Eccles, J. C., 1964, The Physiology of Synapses, Academic Press, New York.

    Google Scholar 

  • Eccles, J. C., and Jaeger, J. C., 1958, The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs, Proc. Roy. Soc. Lond. B 48:38.

    Google Scholar 

  • Eccles, J. C., and MacFarlane, W. V., 1949, Actions of anticholinesterases on endplate potential of frog muscle, J. Neurophysiol. 12:59.

    PubMed  CAS  Google Scholar 

  • Ehrenpreis, S., 1967, Possible nature of the cholinergic receptor, Ann. N. Y. Acad. Sci. 144:720.

    CAS  Google Scholar 

  • Ehrenpreis, S., Hehir, R. M., and Mittag, T. W., 1971, Assay and properties of essential (junctional) cholinesterases of the rat diaphragm, in: Cholinergic Ligand Interactions (D. J. Triggle, J. F. Moran, and E. A. Barnard, eds.), pp. 67–81, Academic Press, New York.

    Google Scholar 

  • Fatt, P., and Katz, B., 1951, An analysis of the endplate potential recorded with an intracellular electrode, J. Physiol. 115:320.

    PubMed  CAS  Google Scholar 

  • Gage, A. W., and Armstrong, C. M., 1968, Miniature endplate currents in voltage-clamped muscle fibre, Nature 218:363.

    PubMed  CAS  Google Scholar 

  • Gauthier, G. F., and Padykula, H. A., 1966, Cytological studies of fiber types in skeletal muscle: A comparative study of the mammalian diaphragm, J. Cell Biol. 28:333.

    PubMed  CAS  Google Scholar 

  • Giacobini, E., and Holmstedt, B., 1960, Cholinesterase in muscles: A histochemical and microgasometric study, Acta Pharmacol. Toxicol. 17:94.

    CAS  Google Scholar 

  • Goldsmith, T. H., 1963, Rates of action of bath-applied drugs at the neuromuscular junction of the frog, J. Physiol. 165:368.

    PubMed  CAS  Google Scholar 

  • Groblewski, G. E., McNamara, B. P., and Wills, J. H., 1956, Stimulation of denervated muscle by DFP and related compounds, J. Pharmacol. Exptl. Therap. 118:116.

    CAS  Google Scholar 

  • Guilbault, G. G., Sadar, M. H., Glazer, R., and Skou, C., 1968, N-Methyl indoxyl esters as substrates for Cholinesterase, Anal. Letters 1:365.

    CAS  Google Scholar 

  • Guth, L., Albers, R. W., and Brown, W. C., 1964, Quantitative changes in Cholinesterase activity of denervated muscle fibers and sole plates, Exptl. Neurol. 10:236.

    CAS  Google Scholar 

  • Guth, L., and Yellin, H., 1971, The dynamic nature of the so-called “fiber types” of mammalian skeletal muscle, Exptl. Neurol. 31:277.

    Google Scholar 

  • Guth, L., Samaha, F. J., and Albers, R. W., 1970, The neural regulation of some phenotypic differences between the fiber types of mammalian skeletal muscle, Exptl. Neurol. 26:126.

    CAS  Google Scholar 

  • Hall, Z. W., 1973, Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle, J. Neurobiol. 4:343.

    PubMed  CAS  Google Scholar 

  • Hall, Z. W., and Kelly, R. B., 1971, Enzymatic detachment of acetylcholinesterase from muscle, Nature 232:62.

    CAS  Google Scholar 

  • Hess, A., 1967, The structure of vertebrate slow and twitch muscle fibers, Invest. Ophthalmol. 6:217.

    PubMed  CAS  Google Scholar 

  • Hess, A., and Pilar, G., 1964, Slow fibres in the extraocular muscles of the cat, J. Physiol. 169:780.

    Google Scholar 

  • Hubbard, J. I., Schmidt, R. F., and Yokuta, T., 1965, The effect of acetylcholine upon mammalian motor nerve terminals, J. Physiol. 181:810.

    PubMed  CAS  Google Scholar 

  • Jedrzejczyk, J., and Barnard, E. A., 1974, in preparation.

    Google Scholar 

  • Karczmar, A. G., 1967, Neuromuscular pharmacology, Ann. Rev. Pharmacol. 7:241.

    PubMed  CAS  Google Scholar 

  • Karnovsky, M. J., 1964, The localization of Cholinesterase activity in rat cardiac muscle by electron microscopy, J. Cell Biol. 23:217.

    PubMed  CAS  Google Scholar 

  • Karnovsky, M. J., and Roots, L., 1964, A “direct-coloring” thiocholine method for cholinesterases, J. Histochem. Cytochem. 12:219.

    PubMed  CAS  Google Scholar 

  • Kasai, M., and Changeux, J.-P., 1971, In vitro excitation of purified membrane fragments by cholinergic agonists. III. Comparison of the dose-response curves to decamethonium with the corresponding curves of decamethonium to the cholinergic receptor, J. Membrane Biol, 6:58.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1965, The measurement of synaptic delay and the time course of acetylcholine release at the neuromuscular junction, Proc. Roy. Soc. Lond. B 161:483.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1973, The binding of acetylcholine to receptors and its removal from the synaptic cleft, J. Physiol. 231:549.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Thesleff, S., 1957, The interaction between edrophonium (tensilon) and acetylcholine at the motor endplate, Brit. J. Pharmacol. 12:260.

    PubMed  CAS  Google Scholar 

  • Koelle, G. B., 1963, Cytological distributions and physiological functions of cholinesterases, in: Handbuch der Experimentellen Pharmacologie, Vol. 15 (G. B. Koelle, ed.), pp. 187–298, Springer-Verlag, Berlin.

    Google Scholar 

  • Kordas, M., 1972, An attempt at an analysis of the factors determining the time course of the end-plate current, J. Physiol. 224:317.

    PubMed  CAS  Google Scholar 

  • Koslow, S. H., and Giacobini, E., 1969, An isotopic micromethod for the measurement of Cholinesterase activity in individual cells, J. Neurochem. 16:1523.

    PubMed  CAS  Google Scholar 

  • Kuba, K., Albuquerque, E. X., and Barnard, E. A., 1973, Diisopropylfluorophosphate: Suppression of the ionic conductance of the cholinergic receptor, Science 181:853.

    PubMed  CAS  Google Scholar 

  • Kuba, K., Albuquerque, E. X., and Barnard, E. A., 1974, A study of the irreversible Cholinesterase inhibitor, diisopropylfluorophosphate, on the time course of endplate currents in frog sartorius muscle, J. Pharmacol. Exptl. Ther. 189:499.

    CAS  Google Scholar 

  • Kuba, K., and Tomita, T., 1971, Effect of prostigmine on the time-course of the endplate potential in the rat diaphragm, J. Physiol. 213:533.

    PubMed  CAS  Google Scholar 

  • Kuno, M., Tarkonis, S. A., and Weakly, J. N., 1971, Correlation between nerve terminal size and transmitter release at the neuromuscular junction of the frog, J. Physiol. 213:545.

    PubMed  CAS  Google Scholar 

  • Landmesser, L., 1972, Pharmacological properties, Cholinesterase activity and anatomy of nerve-muscle junctions in vagus-innervated frog sartorius, J. Physiol. 220:243.

    PubMed  CAS  Google Scholar 

  • Loewi, O., and Navratil, E., 1926, Über humorale Übertragborkeit der Herznervenwirkung. X. Über das Schicksal des Vagusstoffes, Pflügers Arch. Ges. Physiol. 214:678.

    CAS  Google Scholar 

  • Lowry, O. H., Roberts, N. R., Wu, M.-L., Hixon, W. S., and Crawford, D. J., 1954, The quantitative histochemistry of brain. II. Enzyme measurements, J. Biol. Chem. 207:19.

    PubMed  CAS  Google Scholar 

  • Magleby, K. L., and Stevens, C. F., 1972a, The effect of voltage on the time course of endplate currents, J. Physiol. 223:151.

    CAS  Google Scholar 

  • Magleby, K. L., and Stevens, C. F., 1972b, A quantitative description of endplate currents, J. Physiol. 223:173.

    CAS  Google Scholar 

  • Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 69:1445.

    PubMed  CAS  Google Scholar 

  • Marnay, A., and Nachmansohn, D., 1938, Cholinesterase in voluntary muscle, J. Physiol. 92:37.

    PubMed  CAS  Google Scholar 

  • Meeter, E., 1958, The relation between endplate depolarisation and the repetitive response elicited in the isolated rat phrenic nerve-diaphragm preparation by DFP, J. Physiol. 144:38.

    PubMed  CAS  Google Scholar 

  • Meunier, J.-C., Huchet, M., Boquet, P., and Changeux, J.-P., 1971, Séparation de la protéine réceptrice de l’acétylcholine et de l’acétylcholinesterase, Compt. Rend. Acad, Sci. Paris 272:117D.

    Google Scholar 

  • Miledi, R., 1964, Electron microscopical localization of products from histochemical reactions used to detect Cholinesterase in muscle, Nature 204:293.

    PubMed  CAS  Google Scholar 

  • Miledi, R., Molinoff, P., and Potter, L. T., 1971, Isolation of the cholinergic receptor protein of Torpedo electric tissue, Nature 229:554.

    PubMed  CAS  Google Scholar 

  • Mittag, T. W., and Patrick, P., 1969, Properties of cholinesterases (ChE) in intact guinea pig ileum in vitro, Fed. Proc. 28:292.

    Google Scholar 

  • Mittag, T. W., Ehrenpreis, S., and Hehir, R. M., 1971, Functional acetylcholinesterase of rat diaphragm muscle, Biochem. Pharmacol. 20:2263.

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D., 1959, Chemical and Molecular Basis of Nerve Activity, Academic Press, New York.

    Google Scholar 

  • Namba, T., and Grob, D., 1968, Cholinesterase activity of the motor endplate in isolated muscle membrane, J. Neurochem. 15:1445.

    PubMed  CAS  Google Scholar 

  • Namba, T., and Grob, D., 1970, Cholinesterase activity of motor end plate in human skeletal muscle, J. Clin. Invest. 49:936.

    PubMed  CAS  Google Scholar 

  • O’Brien, R. D., Gilmour, L. P., and Eldefrawi, M. E., 1970, A muscarine-binding material in electroplax and its relation to the acetylcholine receptor. II. Dialysis assay, Proc. Natl. Acad. Sci. USA 65:438.

    PubMed  Google Scholar 

  • O’Brien, R. D., Eldefrawi, M. E., and Eldefrawi, A. T., 1972, Isolation of acetylcholine receptors, Ann. Rev. Pharmacol. 12:19.

    PubMed  Google Scholar 

  • Ord, M. G., and Thompson, R. H. S., 1950, The distribution of Cholinesterase types in mammalian tissues, Biochem. J. 46:346.

    PubMed  CAS  Google Scholar 

  • Orkand, R. K., 1963, A further study of electrical responses in slow and twitch muscle fibres of the frog, J. Physiol. 167:181.

    PubMed  CAS  Google Scholar 

  • Padykula, H. A., and Gauthier, G. F., 1970, The ultrastructure of the neuromuscular junctions of mammalian red, white and intermediate skeletal muscle fibers, J. Cell Biol. 46:27.

    PubMed  CAS  Google Scholar 

  • Peachey, L. D., and Luxley, A. F., 1962, Structural identification of twitch and slow striated muscle fibers of the frog, J. Cell Biol. 13:177.

    PubMed  CAS  Google Scholar 

  • Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A., and Stempel, K. E., 1972, Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits, Biochemistry 11:2627.

    PubMed  CAS  Google Scholar 

  • Pfenninger, K. H., 1971, The cytochemistry of synaptic densities. II. Proteinaceous components and mechanism of synaptic connectivity, J. Ultrastruct. Res. 35:451.

    PubMed  CAS  Google Scholar 

  • Porter, C. W., Chiu, T. H., Wieckowski, J., and Barnard, E. A., 1973, Types and locations of cholinergic receptor-like molecules in muscle fibers,. Nature New Biology 241:3.

    PubMed  CAS  Google Scholar 

  • Porter, C. W., Barnard, E. A., and Chiu, T. H., 1973, The ultrastructural localization and quantitation of cholinergic receptors at the mouse motor endplate, J. Membrane Biol. 14:383.

    CAS  Google Scholar 

  • Potter, L. H., 1970, Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles, J. Physiol. 206:145.

    PubMed  CAS  Google Scholar 

  • Rambourg, A., and Leblond, C. P., 1967, Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat, J. Cell Biol. 32:27.

    PubMed  CAS  Google Scholar 

  • Rogers, A. W., Darzynkiewicz, Z., Salpeter, M. M., Ostrowski, K., and Barnard, E. A., 1969, Quantitative studies on enzymes in structures in striated muscles by labeled inhibitor methods. I. The number of acetylcholinesterase molecules and of other DFP-reactive sites at motor endplates, measured radioautographically, J. Cell Biol. 41:865.

    Google Scholar 

  • Rosenberry, T. L., Chang, H. W., and Chen, Y. T., 1972, Purification of acetylcholinesterase by affinity chromatography and determination of active site stoichiometry, J. Biol. Chem. 247:1555.

    PubMed  CAS  Google Scholar 

  • Salpeter, M. M., 1967, Electronmicroscope radioautography as a quantitative tool in enzyme cytochemistry. I. The distribution of acetylcholinesterase at motor endplates of a vertebrate twitch muscle, J. Cell Biol. 32:379.

    PubMed  CAS  Google Scholar 

  • Salpeter, M. M., 1969, Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. II. The distribution of DFP-reactive sites at motor endplates of a vertebrate twitch muscle, J. Cell Biol. 42:122.

    PubMed  CAS  Google Scholar 

  • Salpeter, M. M., Plattner, H., and Rogers, A. W., 1972, Quantitative assay of esterases in end plates of mouse diaphragm by electron microscope autoradiography. J. Histochem. Cytochem. 20:1059.

    PubMed  CAS  Google Scholar 

  • Salpeter, M. M., and Eldefrawi, M. E., 1973, Sizes of end plate compartments, densities of acetylcholine receptor and other quantitative aspects of neuromuscular transmission, J. Histochem. Cytochem. 21:769.

    PubMed  CAS  Google Scholar 

  • Schiaffino, S., Hanzlikova, V., and Pierobon, S., 1970, Relations between structure and function in rat skeletal muscle fibers, J. Cell Biol. 47:107.

    PubMed  CAS  Google Scholar 

  • Silver, A., 1963, A histochemical investigation of cholinesterases at neuromuscular junctions in mammalian and avian muscle, J. Physiol. 169:386.

    PubMed  CAS  Google Scholar 

  • Takeuchi, A., and Takeuchi, N., 1959, Active phase of frog’s endplate potential, J. Neurophysiol. 22:395.

    PubMed  CAS  Google Scholar 

  • Teräväinen, H., 1967, Electron microscopic localization of Cholinesterase in the rat myoneural junction, Histochemie 10:266.

    PubMed  Google Scholar 

  • Usdin, E., 1970, Reactions of cholinesterases with substrates, inhibitors and reactivators, in: Anticholinesterase Agents, Vol. I (A. G. Karczmar, ed.), pp. 47–354, Pergamon, Oxford.

    Google Scholar 

  • van der Meer, C., and Meeter, E., 1956, The mechanism of action of anticholinesterases. II. The effect of diisopropylfluorophosphorate (DFP) on the isolated rat phrenic nerve-diaphragm preparation. A. Irreversible effects, Acta Physiol. Pharmacol. Neerl. 4:454.

    Google Scholar 

  • Werman, R., 1969, An electrophysiological approach to drug-receptor mechanisms, Comp. Biochem. Physiol. 30:997.

    PubMed  CAS  Google Scholar 

  • Werner, G., 1961, Antidromic activity in motor nerves and its relation to a generated event in nerve terminals, J. Neurophysiol. 24:401.

    PubMed  CAS  Google Scholar 

  • Werner, G., and Kuperman, A. S., 1963, Actions at the neuromuscular junction, in: Handbuch der Experimentellen Pharmakologie, Vol. 15 (G. B. Koelle, ed.), pp. 570–678, Springer-Verlag, Berlin.

    Google Scholar 

  • Wieckowski, J., 1971, Interferometric measurements of acetylcholinesterase activity in rat megokaryocytes, J. Histochem. Cytochem. 19:712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Barnard, E.A. (1974). Neuromuscular Transmission—Enzymatic Destruction of Acetylcholine. In: Hubbard, J.I. (eds) The Peripheral Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8699-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8699-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8701-9

  • Online ISBN: 978-1-4615-8699-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics