Skip to main content

Abstract

Theoretical studies of shock waves, their structure and their propagation date well back into the 19th century. Poisson, Stokes and Earnshaw were early pioneers; Rankine, the great Scottish engineer, and a less reknowned French scientist, H. Hugoniot, established foundations which were later elaborated by Rayleigh,1 G. I. Taylor,2 and P. Duhem.3 Their work, along with more recent contributions by Bethe,4 von Neuman,5 Gil barg,6 R. Courant and K. O. Friedrichs7 and others, has been adapted to solids in recent years8 and serves us well today for most purposes. Recent developments by G. R. Fowles and R. Williams9 promise a new dimension in the interpretation of experiments in solids, but fulfillment of their promise may await new measuring techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lord Rayleigh, Proc. Roy. Soc. (London) 84, 247 (1910). This paper provides a summary of and references to earlier work.

    Article  Google Scholar 

  2. G. I. Taylor, Proc. Roy. Soc. (London) 84, 371 (1910).

    Article  Google Scholar 

  3. P. Duhem, Zeits. f. Physik. Chemie, 69, 169 (1909).

    Google Scholar 

  4. H. Bethe, “The Theory of Shock Waves for an Arbitrary Equation of State,” OSRD Report No. 545 (1942).

    Google Scholar 

  5. J. von Neumann, “Oblique Reflection of Shocks,” U. S. Navy Bu. Ord. Explosives Research Report No. 12 (1943).

    Google Scholar 

  6. D. Gilbarg, Am. J. Math. 73, 256 (1951).

    Article  Google Scholar 

  7. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, 1948. This contains an extensive bibliography.

    Google Scholar 

  8. W. Band, J. Geophys. Res. 65, 695 (1960).

    Article  Google Scholar 

  9. G. R. Fowles and R. F. Williams, J. Appl. Phys. 41, 360 (1970).

    Article  Google Scholar 

  10. E. Mach, Akad. Wiss. Wien. 77, 819 (1878).

    Google Scholar 

  11. C. Cranz and H. Schardin, Zeits. f. Phys. 56, 147 (1929).

    Article  Google Scholar 

  12. J. M. Walsh and R. H. Christian, Phys. Rev. 97, 1544 (1955).

    Article  CAS  Google Scholar 

  13. G. R. Fowles, J. Appl. Phys. 32, 1475 (1961).

    Article  CAS  Google Scholar 

  14. L. Howarth, Modern Developments in Fluid Dynamics. High Speed Flow, Vols. I and II, Oxford, 1953.

    Google Scholar 

  15. Physics of High Energy Density, Proc. of the International School of physics “Enrico Fermi,” Course 48, Varenna, 14–26 July, 1969. Published by Academic Press, 1971, P. Caldirola and H. Knoepfel, Eds.

    Google Scholar 

  16. R. G. Fowler, “Electrically Energized Shock Tubes,” U. Oklahoma, Norman, Okla. (1963).

    Google Scholar 

  17. F. S. Minshall, J. Appl. Phys. 26, 463 (1955).

    Article  Google Scholar 

  18. R. W. Goranson, D. Bancroft, B.L. Burton, T. Blechar, E. E. Houston, E. F. Gittings, S. A. Landeen, J. Appl. Phys. 26, 1472 (1955).

    Article  CAS  Google Scholar 

  19. M. H. Rice, R. G McQueen and J. M. Walsh, “Compression of Solids by Strong Shock Waves,„ Solid State Physics, Vol. 6, pp. 1–63. Academic Press, 1958. F. Seitz and D. Turnbull, Eds.

    Article  CAS  Google Scholar 

  20. D. G. Doran in Proc. of High Pressure Measurement Symposium, ASME, Nov. 1962. Published by Butterworth’s, 1962. A. A. Giardini and E. C. Lloyd, Eds.

    Google Scholar 

  21. C. D. Lundergan and W. Herrmann, J. Appl. Phys. 34, 2046 (1963).

    Article  Google Scholar 

  22. R. A. Graham, “Impact Techniques for the Study of Physical Properties of Solids under Shock Wave Loading,“ Paper 66-WA/PT-2, Presented at the Winter Annual Meeting and Energy Systems Exposition, N.Y. (Nov. 27-Dec. 1, 1966). ASME.

    Google Scholar 

  23. F. W. Weilson, W. B. Benedick, W. P. Brooks, R. A. Graham and G. W. Anderson, “Electrical and Optical Effects of Shock Waves in Crystalline Quartz,„ in Les Ondes de Detonation, No. 109, Editions du Centre National de la Recherche Scientifique, 15, Quai Anatole-France-Paris (VIIe) (1962).

    Google Scholar 

  24. L. M. Barker and R. E. Hollenbach, Rev. Sci. Instr. 36, 1617 (1965).

    Article  Google Scholar 

  25. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).

    Article  Google Scholar 

  26. A. N. Dremin, S. V. Pershin and V. F. Pogurelov, “Structure of Shock Waves in KCl and KBr under Dynamic Compression to 200,000 Atm.,“ Combustion, Explosion and Shock Waves 1, 1 (1965).

    Article  Google Scholar 

  27. D. Bernstein and D. Keough, J. Appl. Phys. 35, 1471 (1964).

    Article  CAS  Google Scholar 

  28. D. L. Styris and G. E. Duvall, High Temperatures-High Pressures. 2, 477 (1970).

    CAS  Google Scholar 

  29. J. J. Gilman. Micromechanics of Flow in Solids, McGraw-Hill, New York, 1969. p. 222 ff.

    Google Scholar 

  30. G. E. Duvall and G. R. Fowles, “Shock Waves,“ High Pressure Physics and Chemistry, Vol. 2, Academic Press, 1963. R. S. Bradley, Ed.

    Google Scholar 

  31. M. Van Thiel, A. S. Kusubov, and A. C. Mitchell, “Compendium of Shock Wave Data,” UCRL 50108 (TID-4500) (1967).

    Google Scholar 

  32. E. B. Royce, “High Pressure Equations of State from Shock Wave Data,” Proc. Int. School of Physics, “Enrico Fermi,” op. cit. pp. 80–95.

    Google Scholar 

  33. O. E. Jones and R. A. Graham, “Shear Strength Effects on Phase Transition ‘Pressures’ Determined from Shock-Compression Experiments,” Accurate Characterization of the High Pressure Environment, NBS Special Publication 326, Supt. Doc., U.S. Govt. Printing Office, March 1971.

    Google Scholar 

  34. J. R. Asay, G. R. Fowles. G. E. Duvall. M. H. Miles and R. F. Tinder. J. Appl. Phys. 43, 2132 (1972).

    Article  CAS  Google Scholar 

  35. Y. M. Gupta, “Stress Relaxation in Shock-Loaded LiF Single Crystals,” Ph.D. Thesis, Washington State University (1973).

    Google Scholar 

  36. T. E. Michaels, “Orientation Dependence of Elastic Precursor Decay in Single Crystal Tungsten,” Ph.D. Thesis, Washington State University (1972).

    Google Scholar 

  37. J. W. Edington in Behavior of Metals Under Dynamic Load, p. 191. Springer-Verlag (1968). U. S. Lindholm, Ed.

    Google Scholar 

  38. F. S. Minshall, Bull. APS 29, 23 (12/28/54).

    Google Scholar 

  39. P. C. Johnson. B. A. Stein and R. S. Davis. J. Appl. Phys. 33, 557 (1962).

    Article  CAS  Google Scholar 

  40. J. C. Jamieson and A. W. Lawson, J. Appl. Phys. 33, 776 (1962).

    Article  CAS  Google Scholar 

  41. G. E. Duvall and G. R. Fowles, “Shock Waves,” op. cit. p. 271.

    Google Scholar 

  42. Y. Horie and G. E. Duvall, “Shock Waves and the Kinetics of Solid-Solid Transitions,” Proc. Army Symposium on Solid Mechanics, Sept. 1969, AMMRC MS 68-09.

    Google Scholar 

  43. D. B. Hayes, “Experimental Determination of Phase Transformation Rates in Shocked Potassium Chloride,” Ph.D. Thesis, Washington State University (1972).

    Google Scholar 

  44. E. B. Royce, J. Appl. Phys. 37, 4066 (1966).

    Article  CAS  Google Scholar 

  45. L. C. Bartel, J. Appl. Phys. 40, 3988 (1969).

    Article  CAS  Google Scholar 

  46. R. C. Wayne, G. A. Samara and R. A. Lefever, J. Appl. Phys. 41, 633 (1970).

    Article  CAS  Google Scholar 

  47. D. E. Grady, G. E. Duvall, and E. B. Royce, J. Appl. Phys. 43, 1948 (1972).

    Article  CAS  Google Scholar 

  48. R. N. Keeler, “Electrical Conductivity of Condensed Media at High Pressures,” Proc. Int. School of Physics, “Enrico Fermi,” op. cit. pp. 106–122.

    Google Scholar 

  49. R. A. Graham, O. E. Jones and J. R. Holland, J. Phys. Chem. Solids 27, 1519 (1966).

    Article  CAS  Google Scholar 

  50. J. Y. Wong, R. K. Linde and P. S. DeCarli, Nature 219, 713 (1968).

    Article  CAS  Google Scholar 

  51. M. Van Thiel and A. C. Mitchell, Physics Dept. Progress Report, June-Sept. 1965. UCRL-14538, pp. 50–52.

    Google Scholar 

  52. Q. Johnson and A. C. Mitchell, Phys. Rev. Letters 29, 1369 (1972).

    Article  CAS  Google Scholar 

  53. J. M. Walsh and M. H. Rice, J. Chem. Phys. 26, 815 (1957).

    Article  CAS  Google Scholar 

  54. L. V. Al’tshuler, “Use of Shock Waves in High-Pressure Physics,” Soviet Physics — USPEKHI 8, No. 1, (July-Aug. 1965).

    Google Scholar 

  55. J. W. Forbes and N. L. Coleburn, J. Appl. Phys. 40, 4624 (1969).

    Article  Google Scholar 

  56. R. W. Rohde, J. Appl. Phys. 40, 2988 (1969).

    Article  CAS  Google Scholar 

  57. D. J. Andrews, J. Phys. Chem. Solids. To be published.

    Google Scholar 

  58. M. Ross, J. Phys. Chem. Solids 33, 1105 (1972).

    Article  CAS  Google Scholar 

  59. M. Ross, Phys. Rev.171, 777 (1968).

    Article  CAS  Google Scholar 

  60. D. J. Pastine, J. Phys. Chem. Solids 28, 522 (1966).

    Article  Google Scholar 

  61. A. H. Cottrell, “Theoretical Aspects of Fracture,” Swampscott Conference, 1959. H. Paxton, Ed.

    Google Scholar 

  62. T. Barbee, L. Seaman, R. C. Crewdson, Bull. APS II, 15, 1607 (1970).

    Google Scholar 

  63. R. A. Graham and W. P. Brooks, J. Phys. Chem. Solids 32, 2311 (1971).

    Article  CAS  Google Scholar 

  64. A. Migault et J. Jacquesson, Le J. de Physique 33, 599 (1972).

    Article  CAS  Google Scholar 

  65. G. E. Hauver, Bull. APS II, 14, 1163 (1969).

    Google Scholar 

  66. J. D. Kennedy and W. B. Benedick, J. Phys. Chem. Solids 27, 125 (1966).

    Article  CAS  Google Scholar 

  67. G. R. Cowan and A. H. Holtzman, J. Appl. Phys. 34, 928 (1968).

    Article  Google Scholar 

  68. P. S. DeCarli, Stanford Research Institute, Private Communication.

    Google Scholar 

  69. L. F. Trueb, J. Appl. Phys. 40, 2976 (1969).

    Article  CAS  Google Scholar 

  70. S. S. Batsanov, “Physics and Chemistry of High Dynamic Pressure,” Behaviour of Dense Media Under High Dynamic Pressures, Symposium H.D.P., I.U.T.A.M., Paris, Sept. 1967. Gordon and Breach, N.Y., (1968).

    Google Scholar 

  71. John W. Taylor and Melvin H. Rice, J. Appl. Phys. 34, 364 (1963).

    Article  Google Scholar 

  72. J. N. Fritz and J, A. Morgan, “An Electromagnetic Technique for Measuring Material Velocity,” Los Alamos Scientific Laboratory, LA-DC-72-815, Aug. 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Duvall, G.E. (1973). Problems in Shock Wave Research. In: Rohde, R.W., Butcher, B.M., Holland, J.R., Karnes, C.H. (eds) Metallurgical Effects at High Strain Rates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8696-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8696-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8698-2

  • Online ISBN: 978-1-4615-8696-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics