Skip to main content

Structure and Properties of Cellulose Acetate Membranes

  • Conference paper
Advances in Polymer Science and Engineering

Abstract

Reverse osmosis (RO), a technique used to remove unwanted substances from a fluid, is applicable to reducing dissolved salt content in brackish and salt water. Cellulose acetate (CA) is a prime polymer used in RO desalination membranes and is the subject of this study (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dickson, J., “Thermal Mechanical Properties of Cellulose Acetate Films and Asymmetric Membranes,” Partial fulfillment of Ph.D. requirements, Rutgers — The State University of New Jersey, January, 1971.

    Google Scholar 

  2. Reid, C. E. and E. J. Breton, “Water and Ion Flow Across Cellulosic Membranes,” Journal of Applied Polymer Science, 133–143 (1959).

    Google Scholar 

  3. Loeb, S. and S. Sourirajan, “Sea Water Demineralization by Means of a Semipermeable Membrane,” UCLA Report, 60–60 (July, 1960 ).

    Google Scholar 

  4. Sharpies, A., “An Introduction to Reverse Osmosis,” Chemistry and Industry, 322 (March 7, 1970 ).

    Google Scholar 

  5. Lonsdale, H. K., U. Merton, R. L. Riley, and K. D. Vos, “Reverse Osmosis for Water Desalination,” Research and Devel¬opment Progress Report No. 208, to OSW, General Dynamics, General Atomic Division (Sept., 1966 ).

    Google Scholar 

  6. Lonsdale, H. K., R. L. Riley, C. R. Lyons, and U. Merten, “Preparation of Ultrathin Reverse Osmosis Membranes and the Attainment of Theoretical Salt Rejection,” Journal of Applied Polymer Science, II, 2143–2158 (1967).

    Google Scholar 

  7. Ott, E., H. M. Spurlin, and M. W. Grafflin, Cellulose and Cellulose Derivatives, Parts I and II, Interscience Publishers, Inc., New York (1954).

    Google Scholar 

  8. Loeb, S. and S. Sourirajan, “Sea Water Demineralization by Means of an Osmotic Membrane,” Advan. Chem. Ser., 38, 117 (1963).

    Article  CAS  Google Scholar 

  9. Lonsdale, H. K., Personal communication (1970).

    Google Scholar 

  10. Cullity, B. D., Elements of X-ray Diffraction, Addison- Wesley Publishing Co., Inc., Reading, Mass. (1959).

    Google Scholar 

  11. X-ray Diffraction Instruction and Operating Manual, North American Phillips Co., Inc., Mt. Vernon, N.Y.

    Google Scholar 

  12. Operating Instructions—Differential Scanning Calorimeter, Perkin-Elmer Corp., Norwalk, Conn. (1968).

    Google Scholar 

  13. Foltz, C. R. and P. V. McKinney, “Quantitative Study of the Annealing of Poly(Vinyl Chloride) Near the Glass Transition,” Journal of Applied Polymer Science, 13, 2235 (1969).

    Article  CAS  Google Scholar 

  14. Operating Instructions for TMS–1 Thermal Mechanical Analyzer, Perkin-Elmer Corp., Norwalk, Conn.

    Google Scholar 

  15. Watanabe, S., M. Takai, and J. Hayashi, “An X-ray Study of Cellulose Triacetate,” Journal of Polymer Science: Part C, No. 23, 825–835 (1968).

    Google Scholar 

  16. Kokta, B., P. Luner, and R. Suen, Quarterly Report to OSW on Contract 14-01-0001–1263 (Aug., 1968 ).

    Google Scholar 

  17. Russell, J. and R. C. Van Kerpel, “Transitions in Plasticized and Unplasticized Cellulose Acetates,” Journal of Polymer Science, 25, 77–96 (1957).

    Article  CAS  Google Scholar 

  18. Gilham, J. K. and R. F. Schwenker, Jr., “Thermomechanical and Thermal Analysis of Fiberforming Polymers,” Appl. Polym. Sym. #2, 59–75 (1966).

    Google Scholar 

  19. Mandelkern, L. and P. J. Flory, “Melting and Glossy State Transitions in Cellulose Esters and Their Mixtures with Diluents,” J. Am. Chem. Soc., 73, 3206 (1951).

    Article  CAS  Google Scholar 

  20. Sharpies, A. and F. L. Swinton, “Second-Order Transitions in Solutions of Cellulose Triacetate,” Journal of Polymer Science, 50, 53–64 (1961).

    Article  Google Scholar 

  21. Nakamura, K., “Studies on Viscoelasticity of Cellulose Deriv-ative Films, Part I,” Chemistry of High Polymers (Japan), 13_ (130), 47 (1956).

    Google Scholar 

  22. Clash, R. F., Jr. and L. M. Rynkiewicz, “Thermal Expansion Properties of Plastic Materials,” Ind. Eng. Chem., 36, 279 (1944).

    Article  CAS  Google Scholar 

  23. Barker, R. E., Jr. and C. R. Thomas, “Glass Transition and Ionic Conductivity in Cellulose Acetate,” Journal of Applied Physics, 35(1), 87–94 (Jan., 1964).

    Article  CAS  Google Scholar 

  24. Testa, L. A. and P. F. Bruins, “Cellulose Acetate Membranes for Waste Water Purification,” Modern Plastics, 45(9), 141 (May, 1968).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this paper

Cite this paper

Dickson, J. (1972). Structure and Properties of Cellulose Acetate Membranes. In: Pae, K.D., Morrow, D.R., Chen, Y. (eds) Advances in Polymer Science and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8684-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8684-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8686-9

  • Online ISBN: 978-1-4615-8684-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics