Skip to main content

Biological Specificity and Structure of Molecules

  • Chapter
Molecules and Life

Abstract

This and the following chapters treat the action of proteins, namely, ways in which they perform their specialized tasks. These tasks are varied and have been listed already. We shall dwell on some of the most important functions of proteins without expecting to treat this problem exhaustively. Let us start from the immunological, or protective, function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. C. Boyd, “Fundamentals of Immunology,” 3rd ed., Interscience Publishers, Inc., New York, 1956.

    Google Scholar 

  2. C. A. Villee Jr., “Biology,” 4th ed., W. B. Saunders Co., Philadelphia, 1962.

    Google Scholar 

  3. J. Neel and W. J. Schull, “Human Heredity,” University of Chicago Press, Chicago, 1954.

    Google Scholar 

  4. M. Samter and H. L. Alexander, “Immunological Diseases,” Little, Brown and Co., Boston, 1965.

    Google Scholar 

  5. K. Landsteiner, “The Specificity of Serological Reactions,” 2nd ed., Dover Publications, Inc., New York.

    Google Scholar 

  6. O. Westphal, Die Struktur der Antigene und das Wesen der immunologischen Spezifität, Naturwiss, 46(2): 50(1959).

    CAS  Google Scholar 

  7. D. Pressman and L. A. Sternberger, The Nature of the Combining Sites of Antibodies. The Specific Protection of the Combining Site by Hapten during Iodination, J. Immunol. 66:609(1951).

    PubMed  CAS  Google Scholar 

  8. W. Kauzmann, Chemical Specificity in Biological Systems, Rev. Mod. Phys. 31:549 (1959).

    CAS  Google Scholar 

  9. J. R. Marrack and E. S. Orlans, Steric Factors in Immunochemistry, in: “Progress in Stereochemistry,” Vol. 2 (W. Klyne and P. B. D. De La Mare, eds.), Butterworth and Co. [Publishers], Ltd., London, 1958, p. 228.

    Google Scholar 

  10. L. Pauling, A Theory of the Structure and Process of Formation of Antibodies, J. Am. Chem. Soc. 62:2643(1940);

    CAS  Google Scholar 

  11. L. Pauling, Nature of Forces between Large Molecules of Biological Interest, Nature 161(4097): 707(1943).

    Google Scholar 

  12. L. Pauling, D. H. Campbell, and D. Pressman, The Nature of the Forces between Antigen and Antibody and of the Precipitation Reaction, Physiol. Rev. 23:203(1943).

    CAS  Google Scholar 

  13. L. Pauling, D. Pressman, and A. L. Grossberg, The Serological Properties of Simple Substances, VII, J. Am. Chem. Soc. 66:784(1944).

    CAS  Google Scholar 

  14. D. Pressman, J. T. Maynard, A. L. Grossberg, and L. Pauling, The Serological Properties of Simple Substances, V, J. Am. Chem. Soc. 65:728(1943).

    CAS  Google Scholar 

  15. D. Pressman, A. B. Pardee, and L. Pauling, The Reactions of Antisera Homologous to Various Azophenylarsonic Acid Groups and the p-Azophenylmethylarsinic Acid Group with Some Heterologous Haptens, J. Am. Chem. Soc. 67:1602(1945).

    CAS  Google Scholar 

  16. D. Pressman, Molecular Complementariness in Antigen-Antibody Systems, in: “Molecular Structure and Biological Specificity” (L. Pauling and H. A. Itano, eds.), Stechert, Washington, D.C., 1957, p. 1.

    Google Scholar 

  17. S. J. Singer, Physical-chemical Studies on the Nature of Antigen-Antibody Reactions, J. Cellular Comp. Physiol. 50, Suppl. 1:51(1957).

    CAS  Google Scholar 

  18. S. I. Epstein, P. Doty, and W. C. Boyd, A Thermodynamic Study of Hapten-Antibody Association, J. Am. Chem. Soc. 78:33s06(1956).

    Google Scholar 

  19. F. Karush, Immunologic Specificity and Molecular Structure, in: “Advances in Immunology,” Vol. 2 (W. H. Taliaferro and J. H. Humphrey, eds.), Academic Press, Inc., New York, 1965, p. 1.

    Google Scholar 

  20. J. B. Fleischman, R. R. Porter, and E. M. Press, The Arrangement of the Peptide Chain in γ-Globulin, Biochem. J. 88:220(1963).

    PubMed  CAS  Google Scholar 

  21. F. Haurowitz, “Chemistry and Function of Proteins,” 2nd ed., Academic Press, Inc., New York, 1963.

    Google Scholar 

  22. F. Haurowitz, Nature and Formation of Antibodies, in: “Molecular Structure and Biological Specificity” (L. Pauling and H. A. Itano, eds.), Stechert, Washington, D.C., 1957, p. 18.

    Google Scholar 

  23. F. Haurowitz, The Theories of Antibodies Formation, in: “The Nature and Significance of the Antibody Respose,” Columbia University Press, New York, 1953.

    Google Scholar 

  24. C. Milstein, Variations in Amino Acid Sequence near the Disulphide Bridges of Bence-Jones Proteins, Nature 209(5021): 370(1966).

    PubMed  CAS  Google Scholar 

  25. F. Haurowitz, Antibody-Formation and the Coding Problem, Nature 205(4974): 847 (1965).

    PubMed  CAS  Google Scholar 

  26. F. M. Burnett, “The Integrity of the Body,” Harvard University Press, Cambridge, Mass., 1962.

    Google Scholar 

  27. N. K. Jerne, The Natural-selection Theory of Antibody Formation, Proc. Natl. Acad. Sci. U.S. 41:849(1955).

    CAS  Google Scholar 

  28. L. Szillard, The Control of the Formation of Specific Proteins in Bacteria and in Animal Cells, Proc. Natl. Acad. Sci. U.S. 46:277(1960);

    Google Scholar 

  29. L. Szillard, also, The Molecular Basis of Antibody Formation, Proc. Natl. Acad. Sci. U.S. 46:293(1960).

    Google Scholar 

  30. V. P. Efraimson, Zh. Vses. Khim. Obshchestva im. D. I. Mendeleeva 6(3):314(1961).

    Google Scholar 

  31. J. Lederberg, Genes and Antibodies, Science 129:1649(1959).

    PubMed  CAS  Google Scholar 

  32. P. Gross, J. Coursaget, and M. Macheboeur, Bull. Soc. Chem. Biol. 34:1070(1952).

    Google Scholar 

  33. H. Green and H. S. Anker, On the Synthesis of Antibody Protein, Biochim. Biophys. Acta 13:365(1954).

    PubMed  CAS  Google Scholar 

  34. R. Spiers and E. Speirs, J. Immunol. 90:561(1963).

    Google Scholar 

  35. R. S. Speirs, How Cells Attack Antigens, Sci. Am. 210(2): 58(1964).

    PubMed  CAS  Google Scholar 

  36. G. J. V. Nossal, A. Szenberg, G. L. Ada, and C. M. Austin, Single Cell Studies on 19S Antibody Production, J. Exptl. Medicine 119:485(1964).

    CAS  Google Scholar 

  37. G. J. V. Nossal, How Cells Make Antibodies, Sci. Am. 211(6): 106(1964).

    PubMed  CAS  Google Scholar 

  38. W. C. Boyd, “Introduction to Immunochemical Specificity,” Interscience Publishers, Inc., New York, 1962.

    Google Scholar 

  39. G. C. Bond, “Catalysis by Metals,” Academic Press, Inc., New York, 1962.

    Google Scholar 

  40. A. A. Balandin, Zh. Fiz. khim. 31:745(1957);

    CAS  Google Scholar 

  41. A. A. Balandin, Usp. khim. 31:1265(1962);

    CAS  Google Scholar 

  42. A. A. Balandin, Multipletnaya Teoriya Kataliza, Izd. MGU, 1963.

    Google Scholar 

  43. M. Dixon and E. C. Webb, “Enzymes,” 2nd ed., Academic Press, Inc., New York, 1964.

    Google Scholar 

  44. C. Walter, “Enzyme Kinetics,” The Ronald Press Company, New York, 1966.

    Google Scholar 

  45. H. G. Bray and K. White, “Kinetics and Thermodynamics in Biochemistry,” Academic Press, Inc., New York, 1957.

    Google Scholar 

  46. R. A. Alberty, Mechanisms of Enzyme Action, Rev. Mod. Phys. 31:177(1959).

    CAS  Google Scholar 

  47. B. Chance and D. Herbert, The Enzyme-Substrate Compounds of Bacterial Catalase and Peroxides, Biochem. J. 46:402(1950).

    PubMed  CAS  Google Scholar 

  48. V. Massey, Studies on Fumarase, Biochem. J. 53:72(1953).

    PubMed  CAS  Google Scholar 

  49. R. Lumry, Some Aspects of the Thermodynamics and Mechanism of Enzymic Catalysis, in: “The Enzymes,” Vol. 1 (P. D. Boyer, ed.), Academic Press, Inc., New York, 1959.

    Google Scholar 

  50. R. A. Alberty, W. G. Miller, and H. F. Fisher, Studies of the Enzyme Fumarase, VI, J. Am. Chem. Soc. 79:3973(1957).

    CAS  Google Scholar 

  51. M. V. Vol’kenshtein and B. N. Goldstein, A New Method for Solving the Problems of the Stationary Kinetics of Enzymological Reactions, Biochim. Biophys. Acta 115:471 (1966).

    Google Scholar 

  52. M. V. Vol’kenshtein, B. Goldstein, and V. Stefanov, Molek. Biologiya 1:52(1967)

    Google Scholar 

  53. C. B. Anfinsen, in: “Proceedings of the Fifth International Congress on Biochemistry, Vol 4: Molecular Basis of Enzyme Action and Inhibition” (P. Desnuelle, ed.), Pergamon Press, Inc., New York, 1963, p. 66.

    Google Scholar 

  54. C. B. Anfinsen, “The Molecular Basis of Evolution,” John Wiley and Sons, Inc., New York, 1959.

    Google Scholar 

  55. W. H. Stein and S. Moore, in: “Proceedings of the Fifth International Congress on Biochemistry, Vol. 4: Molecular Basis of Enzyme Action and Inhibition” (P. Desnuelle, ed.), Pergamon Press, Inc., New York, 1963, p. 33.

    Google Scholar 

  56. K. Linderstrom-Lang and J. Schellman, Protein Structure and Enzyme Activity, in: “The Enzymes,” Vol. 1 (P. D. Boyer, ed.), Academic Press, Inc., New York, 1959.

    Google Scholar 

  57. V. N. Orekhovich, in: “Aktualnye Voprosy Sovremennoi Biokhimii,” Medgiz, 1962.

    Google Scholar 

  58. D. E. Koshland Jr., Application of a Theory of Enzyme Specificity to Protein Synthesis, Proc. Natl. Acad. Sci. U.S. 44:98(1958);

    CAS  Google Scholar 

  59. D. E. Koshland Jr., Mechanisms of Transfer Enzymes, in: “The Enzymes,” Vol. 1 (P. D. Boyer, ed.), Academic Press, Inc., New York, 1959.

    Google Scholar 

  60. D. E. Koshland Jr., The Role of Flexibility in Enzyme Action, Cold Spring Harbor Symp. Quant. Biol. 28:473(1963).

    Google Scholar 

  61. A. E. Braunshtein, in: “Aktualyne Voprosy Sovremennoi Biokhimii,” Medgiz, Moscow, 1962.

    Google Scholar 

  62. C. G. Swain and J. F. Brown Jr., Concerted Displacement Reactions, VIII, J. Am. Chem.Soc. 74:2538(1952).

    CAS  Google Scholar 

  63. F. Karush, Heterogeneity of the Binding Sites of Bovine Serum Albumin, J. Am. Chem. Soc. 72:2705(1950).

    CAS  Google Scholar 

  64. H. Gutfreund and J. M. Sturtevant, The Mechanism of Chymotrypsin-catalyzed Reactions, Proc. Natl. Acad. Sci. U.S. 42:719(1956): also,

    CAS  Google Scholar 

  65. H. Gutfreund and J. M. Sturtevant, The Mechanism of the Reaction of Chymotrypsin with p-Nitrophenyl Acetate, Biochem. J. 63:656(1956).

    PubMed  CAS  Google Scholar 

  66. B. Labouesse, B. H. Havsteen, and G. P. Hess, Conformational Changes in Enzyme Catalysis, Proc. Natl. Acad. Sci. U.S. 48:2137(1962).

    CAS  Google Scholar 

  67. I. A. Bolotina, M. V. Vol’kenshtein, and O. Chikalova-Luzina, A Study of Conformational Changes in α-Chymotrypsin by the Rotatory Dispersion Method, Biochemistry (U.S.S.R.) (English Transl.) 31(2): 210(1966).

    Google Scholar 

  68. Yu. M. Torchinskii and L. G. Koreneva, Anomalous Optical Rotatory Dispersion of Cardiac Aspartic-Glutamic Transaminase, Biochemistry (U.S.S.R.) (English Transl.) 28(6): 812(1963);

    Google Scholar 

  69. Yu. M. Torchinskii, The Interaction of Mercaptide-forming Reagents with Heart Aspartic-Glutamic Transaminase, Biochemistry (U.S.S.R.) (English Transl.) 29(3): 458(1964).

    Google Scholar 

  70. D. E. Koshland Jr., J. A. Yankeelov Jr., and J. A. Thoma, Specificity and Catalytic Power in Enzyme Action, Federation Proc. 21(6): 1031(1962).

    Google Scholar 

  71. J. A. Yankeelov Jr., and D. E. Koshland Jr., Evidence for Conformational Changes Induced by Substrates of Phosphoglucomutase, J. Biol. Chem. 240:1593(1965).

    PubMed  CAS  Google Scholar 

  72. I. A. Bolotina, D. S. Markovich, M. V. Vol’kenshtein, and P. Zavodzky, Investigation of the Conformation of D-Glyceraldehyde-3-phosphate Dehydrogenase, Biochim. Biophys. Acta 132:260(1967).

    PubMed  CAS  Google Scholar 

  73. I. A. Bolotina, D. S. Markovich, M. V. Vol’kenshtein, and P. Zavodzky, Investigation of the Conformation of Lactate Dehydrogenase and of Its Catalytic Activity, Biochim. Biophys. Acta 132:271(1967).

    PubMed  CAS  Google Scholar 

  74. J. G. Kirkwood and J. B. Shumaker, The Influence of Dipole Moment Fluctuations on the Dielectric Increment of Proteins in Solution, Proc. Natl. Acad. Sci. U.S. 38:855 (1952).

    CAS  Google Scholar 

  75. M. V. Vol’kenshtein and S. N. Fishman, I. Theory of Effect of Ionization on the α-Helix Content of a Polypeptide, Biophysics (U.S.S.R.) (English Transl.) 11(6): 1096(1966).

    Google Scholar 

  76. L. N. Johnson and D. C. Phillips, Structure of Some Crystalline Lysozyme-inhibitor Complexes Determined by X-ray Analysis at 6Å Resolution, Nature 206(4986): 761 (1965);

    PubMed  CAS  Google Scholar 

  77. L. N. Johnson and D. C. Phillips, “Abstracts of the Seventh International Congress on Crystallography,” Moscow, 1966.

    Google Scholar 

  78. M. V. Vol’kenshtein, Theory of Enzymatic Hydrolysis of Biopolymers, Dokl. Biochem. Sect. 160–161:4(1965).

    Google Scholar 

  79. M. V. Vol’kenshtein, Muscular Activity, Dokl. Biol. Sci. Sect. (English Transl.) 141(1–6): 988(1963).

    Google Scholar 

  80. J. Kirkwood, Kinetics and Mechanisms, II, Discussions Faraday Soc. 20:3(1955);

    Google Scholar 

  81. J. Kirkwood, also, in: “The Mechanism of Enzyme Actions,” The Johns Hopkins Press, Baltimore, Md., 1954.

    Google Scholar 

  82. A. E. Braunshtein, Zh. Vses. Khim. Obshchesteva im. I. D. Mendeleeva 8:(1):81(1963).

    CAS  Google Scholar 

  83. H. Mark, N. G. Gaylord, and N. M. Bikales, “Encyclopedia of Polymer Science and Technology,” Interscience Publishers, Inc., New York, 1964.

    Google Scholar 

  84. J. Wyman Jr., Linked Functions and Reciprocal Effects in Hemoglobin: A Second Look, in: “Advances in Protein Chemistry,” Vol. 19 (C. B. Anfinsen Jr., M. L. Anson, J. T. Edsall, and F. M. Richards, eds.), Academic Press, New York, 1964, p. 223.

    Google Scholar 

  85. M. V. Vol’kenshtein, in “Molekulyarnaya Biofizika,” Nauka, Moscow, 1965.

    Google Scholar 

  86. A. Novick and L. Szillard, “Experiments with a Chemostat on the Rates of Aminoacid Synthesis in Bacteria,” Princeton University Press, Princeton, N.J., 1954.

    Google Scholar 

  87. H. E. Umbarger, Evidence for a Negative Feedback Mechanism in the Biosynthesis of Isoleucine, Science 123:848(1956);

    PubMed  CAS  Google Scholar 

  88. H. E. Umbarger, Feedback Control by Endproduct Inhibition, Cold Spring Harbor Symp. Quant. Biol. 26:301(1961).

    PubMed  CAS  Google Scholar 

  89. J. C. Gerhart and A. B. Pardee, The Effect of the Feedback Inhibitor, CTP, on Subunit Interactions in Aspartate Transcarbamylase, Cold Spring Harbor Symp. Quant. Biol. 28:491(1963).

    CAS  Google Scholar 

  90. J. Monod, J. Wyman, and J.-P. Changeux, On the Nature of Allosteric Transitions: A Plausible Model, J. Mol. Biol. 12:88(1965).

    PubMed  CAS  Google Scholar 

  91. M. V. Vol’kenshtein and B. N. Goldstein, Allosteric Enzyme Models and Their Analysis by the Theory of Graphs, Biochim. Biophys. Acta 115:478(1966).

    Google Scholar 

  92. L. Pauling, The Oxygen Equilibrium of Hemoglobin and Its Structural Interpretation, Proc. Natl. Acad. Sci. U.S. 21:186(1935).

    CAS  Google Scholar 

  93. A. Rossi-Fanelli, E. Antonini, and A. Caputo, Hemoglobin and Myoglobin, in: “Advances in Protein Chemistry,” Vol. 19 (C. B. Anfinsen Jr., M. L. Anson, J. T. Edsall, and F. M. Richards, eds.), Academic Press, Inc., New York, 1964, p. 73.

    Google Scholar 

  94. J. Wyman Jr., and D. W. Allen, The Problem of the Heme Interactions in Hemoglobin and the Basis of the Bohr Effect, J. Polymer Sci. 7(5): 499(1951).

    CAS  Google Scholar 

  95. R. Benesch and Ruth Benesch, Some Relations between Structure and Function in Hemoglobin, J. Mol. Biol. 6(5): 498(1963).

    CAS  Google Scholar 

  96. J. Wyman, Allosteric Effects in Hemoglobin, Cold Spring Harbor Symp. Quant. Biol. 28:483(1963).

    CAS  Google Scholar 

  97. H. Muirhead and M. F. Perutz, Structure of Haemoglobin, Nature 199(4894): 633(1963);

    PubMed  CAS  Google Scholar 

  98. H. Muirhead and M. F. Perutz, Structure of Reduced Human Hemoglobin, Cold Spring Harbor Symp. Quant. Biol. 28:451(1963).

    CAS  Google Scholar 

  99. M. V. Vol’kenshtein and A. K. Shemelin, Investigations of Spiralization of Haemoglobin by Optical Rotary Dispersion, Biophysics (U.S.S.R.) (English Transl.) 11(5): 889 (1966).

    Google Scholar 

  100. M. V. Vol’kenshtein, J. A. Sharonov, and A. K. Shemelin, Anomalous Dispersion of the Faraday Effect in Haemoglobin and Myoglobin, Nature 209(5024).709(1966).

    Google Scholar 

  101. D. E. Atkinson, Biological Feedback Control at the Molecular Level, Science 150(3697): 851(1965).

    PubMed  CAS  Google Scholar 

  102. R. B. Drysdale and A. R. Peacocke, The Molecular Basis of Heredity, Biol. Rev. 36:537 (1961).

    PubMed  CAS  Google Scholar 

  103. M. H. F. Wilkins, Physical Studies of the Molecular Structure of Deoxyribose Nucleic Acid and Nucleoprotein, Cold Spring Harbor Symp. Quart. Biol. 21:75(1956);

    CAS  Google Scholar 

  104. M. H. F. Wilkins, Molecular Structure of Deoxyribose Nucleic Acid and Nucleoprotein and Possible Implications in Protein Synthesis, Biochem. Soc. Symp. 14:13(1956).

    Google Scholar 

  105. G. Zubay and P. Doty, The Isolation and Properties of Deoxyribonucleoprotein Particles Containing Single Nucleic Acid Molecules, J. Mol. Biol. 1(1): 1(1959).

    CAS  Google Scholar 

  106. F. H. C. Crick and J. D. Watson, Structures of Small Viruses, Nature 177(4506):473 (1956).

    PubMed  CAS  Google Scholar 

  107. R. W. Home, The Structure of Viruses, Sci. Am. 208(1): 48(1963).

    Google Scholar 

  108. A. S. Spirin, N. A. Kiselev, R. S. Shakulov, and A. A. Bogdanov, Study of the Structure of the Ribosomes; Reversible Unfolding of the Ribosome Particles in Ribonucleo-protein Strands and a Model of the Packing, Biochemistry (U.S.S.R.) (English Transl.) 28(5): 765(1963).

    Google Scholar 

  109. P. Jordan, Z. Physik.39:711(1938);

    CAS  Google Scholar 

  110. P. Jordan, Über quantenmechanische Resonzanziehung und über das Problem der Immunitätsreaktionen, Z. Physik. 113:431(1939);

    CAS  Google Scholar 

  111. P. Jordan, Über die Spezifität van Antikörpern, Fermenten, Viren, Genem, Naturwiss. 29(7): 89(1941).

    CAS  Google Scholar 

  112. P. Jordan, “Eiweissmoleküle,” Stuttgart, 1947.

    Google Scholar 

  113. W. H. Stockmayer, Forces between Macromolecules, Rev. Mod. Phys. 31:103(1959).

    CAS  Google Scholar 

  114. L. Pauling and M. Delbrück, The Nature of the Intermolecular Forces Operative in Biological Processes, Science 92:77(1940).

    PubMed  CAS  Google Scholar 

  115. H. Jehle, Specificity of Interaction between Identical Molecules, Proc. Natl. Acad. Sci. U.S. 36:238(1950);

    CAS  Google Scholar 

  116. H. Jehle, Quantum-mechanical Resonance between Identical Molecules, J. Chem. Phys. 18:1150(1950).

    CAS  Google Scholar 

  117. J. M. Yos, W. L. Bade, and H. Jehle, Specificity of the London-Eisenschitz-Wang Force, in: “Molecular Structure and Biological Specificity” (L. Pauling and H. A. Itano, eds.), Stechert, Washington, D.C., 1957.

    Google Scholar 

  118. P. S. Zyryanov, Tsitologiya 2:62(1960);

    Google Scholar 

  119. P. S. Zyryanov, Nature of the Interaction Forces between Chromosomes, Biophysics (U.S.S.R.) (English Transl.) 6(4): 89(1961).

    Google Scholar 

  120. E. M. Lifshitz, Zh. E.T.F. 29:94(1954).

    Google Scholar 

  121. See, for example, R. A. Becker, “Introduction to Theoretical Mechanics,” McGraw-Hill Book Company, New York, 1954.

    Google Scholar 

  122. M. Kamiya, “Symposium on the Mechanism of Cytoplasmic Streaming, Cell Movement and the Saltatory Motion of Subcellular Particles,” Academic Press, Inc., New York, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Vol’kenshtein, M.V. (1970). Biological Specificity and Structure of Molecules. In: Molecules and Life. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8594-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8594-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8596-1

  • Online ISBN: 978-1-4615-8594-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics