Skip to main content

Chemical and microbial degradation of ten selected pesticides in aquatic systems

  • Chapter
Residue Reviews

Part of the book series: Residue Reviews ((RECT,volume 45))

Abstract

This review summarizes work reported in the literature during the 25 years from 1945 to 1971 concerning the aquatic degradation of ten selected pesticides (Table I). These compounds, chosen for study by the Environmental Protection Agency, represent a broad range of currently used pesticide types predicted to be of continuing importance. Included are polychlorinated biphenyls (PCB’s), herbicides, insecticides, and a fungicide which are representative of carbamates, s-triazines, organochlorines, and organophosphates. Although PCB’s are not used as pesticides, they are persistent in environmental waters and can increase the toxicity of chlorinated and organophosphorous pesticides (Lichtenstein et al. 1969, Hammond 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnihotri, V. P.: Persistence of captan and its effects on microflora, respiration, and nitrification of a forest nursery soil. Can. J. Microbiol. 17, 377 (1971).

    Article  Google Scholar 

  • Ahmed, M. K., and J. E. Casida: Metabolism of some organophosphorus insecticides by microorganisms. J. Econ. Entomol. 51, 59 (1958).

    CAS  Google Scholar 

  • Aly, O. M., and S. D. Faust: Studies on the fate of 2,4-D and ester derivatives in natural surface waters. J. Agr. Food Chem. 12, 541 (1964).

    Article  CAS  Google Scholar 

  • Archer, T. E., and D. G. Crosby: Gas chromatographic measurement of toxaphene in milk, fat, blood, and alfalfa hay. Bull. Environ. Contam. Toxicol. 1, 70 (1966).

    Article  CAS  Google Scholar 

  • Armstrong, D. E., and G. Chesters: Adsorption catalyzed chemical hydrolysis of atrazine. Environ. Sci. Technol. 2, 683 (1968).

    Article  CAS  Google Scholar 

  • Armstrong, D. E., and G. Chesters, and R. F. Harris: Atrazine hydrolysis in soil. Soil Sci. Soc. Amer. Proc. 31, 61 (1967).

    CAS  Google Scholar 

  • Aunus, L. J.: The biological detoxication of hormone herbicides in soil. Plant and Soil 3, 170 (1951).

    Article  Google Scholar 

  • Aunus, L. J.: Microbiological breakdown of herbicides in soils. In E. K. Woodford and G. R. Sagar (eds.) Herbicides and the soil. Oxford Blackwell (1960).

    Google Scholar 

  • Back, R. C.: Significant developments in eight years with Sevin insecticide. J. Agr. Food Chem. 13, 198 (1965).

    Article  CAS  Google Scholar 

  • Bell, G. R.: Some morphological and biochemical characteristics of a soil bacterium which decomposes 2,4-dichlorophenoxyacetic acid. Can. J. Microbiol. 3, 821 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Bell, G. R.: Studies on a soil achromobacter which degrades 2,4-dichlorophenoxyacetic acid. Can. J. Microbiol. 6, 325 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Bell, M. R., and R. Mglauchlin: Influence of the protozoan Mattesia grandis McLaughlin on the toxicity to the boll weevil of four insecticides. J. Econ. Entomol. 63, 266 (1970).

    CAS  Google Scholar 

  • Bollag, J. M., G. G. Briggs, J. E. Dawson, and M. Alexander: Enzymatic degradation of chlorocatechols. J. Agr. Food Chem. 16, 829 (1968).

    Article  CAS  Google Scholar 

  • Burchfield, H. P.: Comparative stabilities of dyrene, 1-fluoro-2,4-dinitrobenzene, dichlone and captan in a silt loam soil. Contrib. Boyce Thompson Inst. 20, 205 (1959).

    CAS  Google Scholar 

  • Burchfield, H. P., and J.N. Schechtman: Absorptiometric analysis of N-(trichloromethyl-thio)-4-cyclohexene-1,2-dicarboximide (captan). Contrib. Boyce Thompson Inst. 19, 411 (1958).

    CAS  Google Scholar 

  • Butler, P. A.: Effects of herbicides on estuarine fauna. Proc. S. Weed Conf. 18, 576 (1965).

    CAS  Google Scholar 

  • Chen, P. R., W. P. Tucker, and W. C. Dauterman: Structure of biologically produced malathion monoacid. J. Agr. Food Chem. 17, 86 (1969).

    Article  CAS  Google Scholar 

  • Christie, A. E.: Effects of insecticides on algae. Water & Sewage Works 116, 172 (1969).

    CAS  Google Scholar 

  • Comes, R. D., and F. L. Timmons: Effect of sunlight on the phytotoxicity of some phenylurea and triazine herbicides on a soil surface. Weeds 13, 81 (1965).

    Article  CAS  Google Scholar 

  • CooK, J. W., and R. Ottes: Note on the conversion of some organophosphate pesticides to less polar compounds by ultraviolet light. J. Assoc. Official Anal. Chemists 42, 211 (1959).

    Google Scholar 

  • Cope, O. B.: Sport Fishery investigations, pp. 26–42. In J. L. George (ed.) Pesticide-wildlife studies: A review of Fish and Wildlife Service investigations during 1961 and 1962. U.S. Fish Wildlife Service, Circ. 167. U.S. Department of the Interior, Washington, D.C., June (1963).

    Google Scholar 

  • Couch, R. W., J. V. Gramlich, D. E. Davis, and H. H. Funderburk, Jr.: The metabolism of atrazine and simazine by soil fungi. Proc. S. Weed Conf. 18, 623 (1965).

    CAS  Google Scholar 

  • Cowart, R. P., F. L. Bonner, and E. A. Errs, Jr.: Rate of hydrolysis of seven organophosphate pesticides. Bull. Environ. Contam. Toxicol. 6, 231 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Crosby, D. G.: The nonmetabolic decomposition of pesticides. Ann. N.Y. Acad. Sci. 160, 82 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Crosby, D. G.: Chemical and microbial degradation of ten pesticides in aquatic systems 119 The nonbiological degradation of pesticides in soils. In Pesticides in the soil—A symposium, p. 86. Mich. St. Univ., E. Lansing (1970).

    Google Scholar 

  • Crosby, D. G., E. Leitis, and W. L. Winterlin: Photodecomposition of carbamate insecti- cides. J. Agr. Food Chem. 13, 204 (1965).

    Article  CAS  Google Scholar 

  • Crosby, D. G., and H. O. Tutass: Photodecomposition of 2,4-dichlorophenoxyacetic acid. J. Agr. Food Chem. 14, 596 (1966).

    Article  CAS  Google Scholar 

  • Daines, R. H., R. J. Lukens, E. Brennan, and I. A. Leone: Phytotoxicity of captan as influenced by formulation, environment, and plant factors. Phytopathol. 47, 567 (1957).

    CAS  Google Scholar 

  • Davison, A. N.: The conversion of schradan (OMPA) and parathion into inhibitors of cholinesterase by mammalian liver. Biochem. J. 61, 203 (1955).

    PubMed  CAS  Google Scholar 

  • Demarco, J., J. M. Symons, and G. G. Robeck: Behavior of synthetic organics in stratified impoundments. J. Amer. Water Works Assoc. 59, 965 (1967).

    CAS  Google Scholar 

  • Donouch, H. W., and O. G. Wiggins: Nature of the water-soluble metabolites of carbaryl in bean plants and their fate in rats. J. Econ. Entomol. 62, 49 (1969).

    Google Scholar 

  • Duxbury, J. M., J. M. Tiedje, M. Alexander, and J. E. Dawson: 2,4-D metabolism: Enzymatic conversion of chloromaleylacetic acid to succinic acid. J. Agr. Food Chem. 18, 199 (1970).

    Article  CAS  Google Scholar 

  • Eichelberger, J. W., and J. J. Lichtenberg: Persistence of pesticides in river water. Environ. Sci. Technol. 5, 541 (1971).

    Article  CAS  Google Scholar 

  • Eldefrawi, M. E., and W. M. Hosxins: Relation of the rate of penetration and metabolism to the toxicity of Sevin to three insect species. J. Econ. Entomol. 54, 401 (1961).

    CAS  Google Scholar 

  • Elrefai, A., and T. L. Hopkins: Parathion absorption, translocation, and con- version to paraoxon in bean plants. J. Agr. Food Chem. 14, 588 (1966).

    Article  CAS  Google Scholar 

  • Evans, W. C., and B. S. W. Smith: The photochemical inactivation and microbial metabolism of the chlorophenoxyacetic acid herbicides. Proc. Biochem. Soc. 57, xxx (1954).

    Google Scholar 

  • Faulkner, J. K., and D. Woodcock: Metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) by Aspergillus niger van Tiegh. Nature 203, 865 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Fernley, H. N., and W. C. Evans: Metabolism of 2:4-dichlorophenoxyacetic acid by soil Pseudomonas: Isolation of a-chloromuconic acid as an intermediate. Proc. Biochem. Soc. 73, 22p (1959).

    Google Scholar 

  • Frawley, J. P. J. W. Cook, J. R. Blake, and O. G. Fitzhugh: Effect of light on chemical and biological properties of parathion. J. Agr. Food Chem. 6, 28 (1958).

    Article  CAS  Google Scholar 

  • FWQA Annual Progress Report of Project 16050 EHH: Fate of selected pesticides in the aquatic environment. Ill. Nat. Hist. Survey, Urbana (1970).

    Google Scholar 

  • Gage, J. C.: A cholinesterase inhibitor derived from 0,0-diethyl O-p-nitrophenyl thiophosphate in vivo. Biochem. J. 54, 426 (1953).

    PubMed  CAS  Google Scholar 

  • Gerking, S. D.: Destruction of submerged aquatic plants by 2,4-D. J. Wildlife Management 12, 221 (1948).

    Google Scholar 

  • Getzin, L. W.: Metabolism of diazinon and zinophos in soils. J. Econ. Entomol. 60, 505 (1967).

    CAS  Google Scholar 

  • Graetz, D. A., G. Chesters; T. C. Daniel, L. W. Newland, and G. B. Lee: Parathion degradation in lake sediments. J. Water Pollution Control Fed. 42, R76 (1970).

    Google Scholar 

  • Gramlich, J. V., and R. E. Frans: Kinetics of Chlorella inhibition by herbicides. Weeds 12, 184 (1964).

    Article  CAS  Google Scholar 

  • Gregory, W, W., Jr., J. K. Reed, and L. E. Priester, Jr.: Accumulation of parathion and DDT by some algae and protozoa. J. Protozool. 16, 69 (1969).

    PubMed  CAS  Google Scholar 

  • Gunner, H. B., B. M. Zuckerman, R. W. Walker, C. W. Miller, K. H. Deubert, and R. E. Longley: The distribution and persistence of diazinon applied to plant and soil and its influence on rhizosphere and soil microflora. Plant and Soil 25, 249 (1966).

    Article  CAS  Google Scholar 

  • Gunner, H. B., B. M. Zuckerman, R. W. Walker, C. W. Miller, K. H. Deubert, and R. E. Longley: Degradation of diazinon by synergistic microbial action. Nature 217, 1183 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Gustafson, C. G.: PCB’s—Prevalent and persistent. Environ. Sci. Technol. 4, 814 (1970).

    Article  CAS  Google Scholar 

  • Hagstrum, D. W.: Laboratory studies on the effect of several insecticides on Tarentula kochi. J. Econ. Entomol. 63, 1844 (1970).

    CAS  Google Scholar 

  • Hammond, A. L.: Chemical pollution: Polychlorinated biphenyls. Science 175, 155 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Hance, R. J., and G. Chesters: The fate of hydroxyatrazine in a soil and a lake sediment. Soil Biol. Biochem. 1, 309 (1969).

    CAS  Google Scholar 

  • Hansen, D. J., P. R. Parrish, J. I. Lowe, A. J. Wilson, Jr., and P. D. Wilson: Chronic toxicity, uptake, and retention of Aroclor 1254 in two estuarine fishes. Bull. Environ. Contam. Toxicol. 6, 113 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Harris, C. I.: Adsorption, movement, and phytotoxicity of monuron and s-triazine herbicides in soil. Weeds 14, 6 (1966).

    Article  CAS  Google Scholar 

  • Hassan, A., S. M. A. D. Zayed, and M. R. E. Bahig: Carbamate esterase, amine oxidase and catalase as interfering enzymes in the metabolism of Sevin. Naturwiss. 53, 529 (1966).

    Article  CAS  Google Scholar 

  • Hemmett, R. B., Jr., and S. D. Faust: Biodegradation kinetics of 2,4-dichlotophenoxyacetic acid by aquatic microorganisms. Residue Reviews 29, 191 (1968).

    Google Scholar 

  • Hemphill, J. E.: Toxaphene as a fish toxin. Progressive Fish Culturist 16, 41 (1954).

    Article  CAS  Google Scholar 

  • Hitchcock, M., and S. D. Murphy: Enzymatic reduction of 0,0-(4-nitrophenyl) phosphorothioate, 0,0-diethyl O-(4-nitrophenyl) phosphate, and 0-ethyl 0-(4-nitrophenyl) benzene thiophosphonate by tissues from mammals, birds, and fishes. Biochem. Pharmacol. 16, 1801 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, D. A., and J. R. Olive: The effects of rotenone and toxaphene upon plankton of two Colorado reservoirs. Limnol. Oceanogr. 6, 219 (1961).

    Article  Google Scholar 

  • Hooper, F. F., and A. R. Grzenda: The use of toxaphene as a fish poison. Trans. Amer. Fish. Soc. 85, 180 (1955).

    Article  Google Scholar 

  • Hughes, R. A.: Studies on the persistence of toxaphene in treated lakes. Ph.D. Thesis, p. 20. Univ. Wisc. (1970).

    Google Scholar 

  • Jensen, H. L., and H. I. Petersen: Detoxication of hormone herbicides by soil bacteria. Nature 170, 39 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Joiner, R. L., H. W. Chambers, and K. P. Baetcke: Toxicity of parathion and several of its photoalteration products to boll weevils. Bull. Environ. Contam. Toxicol. 6, 220 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Jordan, L. S., B. E. Day, and W. A. Clerk: Photodecomposition of triazines Weeds 12, 5 (1964).

    Article  CAS  Google Scholar 

  • Kallman, B. J., O. B. Cope, and R. J. Navarre: Distribution and detoxication of toxaphene in Clayton Lake, New Mexico. Trans. Amer. Fish. Soc. 91, 14 (1962).

    Article  CAS  Google Scholar 

  • Kapoor, I. P., R. L. Metcalf, R. F. Nystrom, and G. K. Sancha: Comparative metabolism of methoxychlor, methiochlor, and DDT in mouse, insects, and in a model ecosystem. J. Agr. Food Chem. 18, 1145 (1970).

    Article  CAS  Google Scholar 

  • Karinen, J. F., J. G. Lamberton, N. E. Stewart, and L. C. Terriere: Persistence of carbaryl in the marine estuarine environment. Chemical and biological stability in aquarium systems. J. Agr. Food Chem. 15, 148 (1967).

    Article  CAS  Google Scholar 

  • Kaufman, D. D., and P. C. Kearney: Microbial degradation of s-triazine herbicides. Residue Reviews 32, 235 (1970).

    PubMed  CAS  Google Scholar 

  • Kaufman, D. D., and P. C. Kearney, and J. Blake: Degradation of atrazine by soil fungi. Soil Biol. Biochem. 2, 73 (1970).

    CAS  Google Scholar 

  • Keil, J. E., L. E. Priester, and S. H. Sandifer: Polychlorinated biphenyl (Aroclor 1242): Effects of uptake on growth, nucleic acids, and chlorophyll of a marine diatom. Bull. Environ. Contaim. Toxicol. 6, 156 (1971).

    Article  CAS  Google Scholar 

  • Konrad, J. G., D. E. Armstrong, and G. Chesters: Soil degradation of diazinon, a phosphorothioate insecticide. Agron. J. 59, 591 (1967).

    Article  CAS  Google Scholar 

  • Konrad, J. G., D. E. Armstrong, and G. Chesters, G. Chesters, and D. E. Armstrong: Soil degradation of malathion, a phosphorodithioate insecticide. Soil Sci. Soc. Amer. Proc. 33, 259 (1969).

    Article  CAS  Google Scholar 

  • Kuun, R. J.: Possible role of tyrosinase and cytochrome P-450 in the metabolism of 1-naphthyl methylcarbamate (carbaryl) and phenyl methylcarbamate by houseflies. J. Agr. Food Chem. 17, 112 (1969).

    Article  Google Scholar 

  • Lamberton, J. G., and R. R. Claeys: Degradation of 1-naphthol in sea water. J. Agr. Food Chem. 18, 92 (1970).

    Article  CAS  Google Scholar 

  • Lamoureux, G. L., R. H. Shimabukuro, H. R. Swanson, and D. S. Freak: Metabolism of 2-chloro 4 ethylamino-6-isopropylamino-s-triazine (atrazine) in excised sorghum leaf sections. J. Agr. Food Chem. 18, 87 (1970).

    Article  Google Scholar 

  • Li, C. F., and R. L. Bradley, Jr.: Degradation of chlorinated hydrocarbon pesticides in milk and butteroil by ultraviolet energy. J. Dairy Sci. 52, 27 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein, E. P., and K. R. Schultz: The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soils, with special emphasis on parathion. J. Econ. Entomol. 57, 618 (1964).

    CAS  Google Scholar 

  • Lichtenstein, E. P., and K. R. Schultz, T. W. Fuhremann, and T. T. Liang: Biological interaction between plasticizers and insecticides. J. Econ. Entomol. 62, 761 (1969).

    CAS  Google Scholar 

  • Loeppky, C., and B. G. Tweedy: Effects of selected herbicides upon growth of soil algae. Weed Sci. 17, 110 (1969).

    CAS  Google Scholar 

  • Loos, M. A.: Phenoxyalkanoic acids, p. 1. In P. C. Kearney and D. D. Kaufman (eds.) Degradation of herbicides. New York Marcel Dekker (1969).

    Google Scholar 

  • Loos, M. A., J. M. Bollag, and M. Alexander: Phenoxyacetate herbicide detoxication by bacterial enzymes. J. Agr. Food Chem. 15, 858 (1967).

    Article  CAS  Google Scholar 

  • Lukens, R. J.: Thiophosgene split from captan by yeast. Phytopathol. Abstr. 53, 881 (1963).

    Google Scholar 

  • Lukens, R. J.: The sulfur-depletion of cells by captan. Phytopathol. 54, 881 (1964).

    Google Scholar 

  • Lukens, R. J., and H. D. Sisler: Chemical reactions involved in the fungitoxicity of captan. Phytopathol. 48, 235 (1958).

    CAS  Google Scholar 

  • Mccormick, L. L., and A. E. Hiltbold: Microbiological decomposition of atrazine and diuron in soil. Weeds 14, 77 (1966).

    Article  CAS  Google Scholar 

  • Mclane, S. R.: Measuring volatility of herbicides. Proc. S. Weed Conf. 16, 370 (1963).

    CAS  Google Scholar 

  • Mackiewicz, M., K. H. Deubert, H. B. Gunner, and B. M. Zuckerman: Study of parathion biodegradation using gnotobiotic techniques. J. Agr. Food Chem. 17, 129 (1969).

    Article  CAS  Google Scholar 

  • Matsumura, F., and G. M. Bousii: Degradation of insecticides by a soil fungus, Trichoderma viride. J. Econ. Entomol. 61, 610 (1968).

    PubMed  CAS  Google Scholar 

  • Matsumura, F., and G. M. Bousii: Malathion degradation by Trichoderma viride and a Pseudomonas species. Science 151, 1278 (1966).

    Article  Google Scholar 

  • Mendel, J. L., A. K. Klein, J. T. Chen, and M. S. Walton: Metabolism of DDT and some other chlorinated organic compounds by Aerobacter aerogenes. J. Assoc. Official Anal. Chemists 50, 897 (1967).

    CAS  Google Scholar 

  • Mendoza, C. G., P. J. Wales, D. L. Grant, and K. A. Mccully: Effect of bromine and ultraviolet light on eight pesticides detected with liver esterases of five species. J. Agr. Food Chem. 17, 1196 (1969).

    Article  CAS  Google Scholar 

  • Metcalf, R. L., G. K. Sangha, and I. P. Kapoor: Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ. Sci. Technol. 5, 709 (1971).

    Article  CAS  Google Scholar 

  • Milk, D. L., and P. A. Dahm: Metabolism of parathion by two species of Rhizobium. J. Econ. Entomol. 63, 1155 (1970).

    Google Scholar 

  • Miller, C. W., W. E. Tomlinson, and R. L. Norgren: Persistence and move- ment of parathion in irrigation waters. Pest. Monit. J. 1, 47 (1967).

    Google Scholar 

  • Miller, C. W., W. E. Tomlinson, and R. L. Norgren, B. M. Zuckerman, and A. J. CHARIG: Water translocation of diazinon-C1 and parathion-S3’ off a model cranberry bog and subsequent occurrence in fish and mussels. Trans. Amer. Fish. Soc. 95, 345 (1966).

    Article  CAS  Google Scholar 

  • Miller, P. M.: Heat-decomposition products of captan as phytotoxic agents. Phytopathol. Abstr. 47, 245 (1957).

    Google Scholar 

  • Mitchell, L. C.: The effect of ultraviolet light (2537 A) on 141 pesticide chemicals by paper chromatography. J. Assoc. Official Anal. Chemists 44, 643 (1961).

    CAS  Google Scholar 

  • Monsanto Chemical Company: Parathion, methyl parathion, stabilized methyl parathion. A guide for formulators. Agr. Chem. Div., Tech. Bull. AG-1, 52 pp. (1960).

    Google Scholar 

  • Muhlmann, R., and G. Schrader: Hydrolyse der insektiziden Phosphorsäureester. Z. Naturforsch. 12b, 196 (1957).

    Google Scholar 

  • Mulla, M. S.: Persistence of mosquito larvicides in water. Mosquito News 23, 234 (1963).

    CAS  Google Scholar 

  • Mulla, M. S., J. O. Keith, and F. A. Gunther: Persistence and biological effects of parathion residues in waterfowl habitats. J. Econ. Entomol. 59, 1085 (1966).

    Google Scholar 

  • Munnecke, D. E., K. H. Domsch, and J. W. Eckert: Fungicidal activity of air passed through columns of soil treated with fungicides. Phytopathol. 52, 1298 (1962).

    CAS  Google Scholar 

  • Newman, A. S., and J. R. Thomas: Decomposition of 2,4-dichlorophenoxyacetic acid in soil and liquid media. Soil Sci. Soc. Amer. Proc. 14, 160 (1949).

    Google Scholar 

  • Nicholson, H. P.: Occurrence and significance of pesticide residues in water. J. Wash. Acad. Sci. 59, 77 (1969).

    CAS  Google Scholar 

  • Nicholson, H. P., A. R. Grzenda, G. J. Lauer, W. S. Cox, and J. I. Teasley: Water pollution by insecticides in an agricultural river basin. I. Occurrence of insecticides in river and treated municipal water. Limnol. Oceanogr. 9, 310 (1964).

    Article  Google Scholar 

  • Nicholson, H. P., H. J. Webb, G. J. Lauer, R. E. O’brien, A. R. Grzenda, and D. W. Shanxlin: Insecticide contamination in a farm pond. Trans. Amer. Fish. Soc. 91, 213 (1962).

    Article  Google Scholar 

  • Obien, S. R., and R. E. Green: Degradation of atrazine in four Hawaiian soils. Weed Sci. 17, 509 (1969).

    CAS  Google Scholar 

  • Ovens, R. G., and G. Blaaa: Site of action of captan and dichlone in the pathway between acetate and citrate in fungus spores. Contrib. Boyce Thompson Inst. 20, 459 (1960a).

    Google Scholar 

  • Ovens, R. G., and G. Blaaa: Chemistry of the reactions of dichlone and captan with thiols. Contrib. Boyce Thompson Inst. 20, 475 (1960b).

    Google Scholar 

  • Ovens, R. G., and G. Blaaa, and H. M. Novotny: Mechanism of action of the fungicide captan [N-(trichloromethylthio)-4-cyclohexene-1,2-dicarboximide]. Contrib. Boyce Thompson Inst. 20, 171 (1959).

    Google Scholar 

  • Pape, B. E., and M. J. Zabik: Photochemistry of selected 2-chloro-and 2-methylthio-4,6-di(alkylamino)-s-triazine herbicides. J. Agr. Food Chem. 18, 202 (1970).

    Article  CAS  Google Scholar 

  • Pardue, J. R., Elizabeth A. Hansen, R. P. Barron, and J. T. Chen: Diazinon residues on field-sprayed kale. Hydroxydiazinon—A new alteration product of diazinon. J. Agr. Food Chem. 18, 405 (1970).

    Article  CAS  Google Scholar 

  • Paulson, G. D., R. G. Zaylskie, M. V. Zehr, C. E. Portnoy, and V. J. Feil: Metabolites of carbaryl (1-naphthyl methylcarbamate) in chicken urine. J. Agr. Food Chem. 18, 110 (1970).

    Article  CAS  Google Scholar 

  • Peakall, D. B., and J. L. Lincer: Polychlorinated biphenyls—Another long-life widespread chemical in the environment. Biosci. 20, 958 (1970).

    Article  CAS  Google Scholar 

  • Randall, C. W.: Toxicity of organophosphate insecticides to fresh-water microorganisms. Proc. 2nd Annual Amer. Water Resources Conf., pp. 352–364, Chicago, Ill. (1966).

    Google Scholar 

  • Reinbold, K. A., I. P. Kapoor, W. F. Childers, W. N. Bruce: Metcalf: Comparative uptake and biodegradability of DDT and methoxy- chlor by aquatic organisms. Ill. Nat. Hist. Surv. Bull. 30, 405 (1971).

    Google Scholar 

  • Richardson, L. T.: Effects of atrazine on growth response of soil fungi. Can. J. Plant Sci. 50, 594 (1970).

    Article  CAS  Google Scholar 

  • Richmond, D. V., and E. Somers: Studies on the fungitoxicity of captan. IV. Re- actions of captan with cell thiols. Ann. Applied Biol. 57, 231 (1966).

    Article  CAS  Google Scholar 

  • Richmond, D. V., and E. Somers: Studies on the fungitoxicity of captan. VI. Decomposition of ‘SS- labelled captan by Neurospora crassa conidia. Ann. Applied Biol. 62, 35 (1968).

    Article  CAS  Google Scholar 

  • Risebrouch, R. W., P. Rieche, D. B. Peakall, S. G. Herman, and M. N. Kmven: Polychlorinated biphenyls in the global ecosystem. Nature 220, 1098 (1968).

    Article  Google Scholar 

  • Rodriguez-Kabana, R., E. A. Curl, and H. H. Funderburk, Jr.: Effect of atrazine on growth activity of Sclerotium rolfsii and Trichoderma viride in soil. Can. J. Microbiol. 14, 1283 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Roeth, F. W., T. L. Lavy, and O. C. Burnside: Atrazine degradation in two soil profiles. Weed Sci. 17, 202 (1969).

    CAS  Google Scholar 

  • Rocoff, M. H., and J. J. Reid: Bacterial decomposition of 2,4-dichlorophenoxyacetic acid. J. Bacteriol. 71, 303 (1956).

    Google Scholar 

  • Ruzicka, J. H., J. Thompson, and B. B. Wheals: The gas chromatographic determination of organophosphorus pesticides. Part II. A comparative study of hydrolysis rates. J. Chromatog. 31, 37 (1967).

    Article  CAS  Google Scholar 

  • Safe, S., and O. Hutzincer: Polychlorinated biphenyls: Photolysis of 2,4,6,2’,4’,6’hexachlorobiphenyl. Nature 232, 641 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Sato, R., and H. Kuso: The water pollution caused by organophosphorus insecticides in Japan. Adv. Water Pollution Research 1, 95 (1964).

    Google Scholar 

  • Schoettger, R. A., and J. R. Olive: Accumulation of toxaphene by fish-food organisms. Limnol. Oceanogr. 6, 216 (1961).

    Article  Google Scholar 

  • Schwartz, H. G., Jr.: Microbial degradation of pesticides in aqueous solutions. J. Water Pollution Control Fed. 39, 1701 (1967).

    CAS  Google Scholar 

  • Sethunathan, N., and I. C. Macrae: Persistence and biodegradation of diazinon in submerged soils. J. Agr. Food Chem. 17, 221 (1969a).

    Article  CAS  Google Scholar 

  • Sethunathan, N., and I. C. Macrae: Some effects of diazinon on the microflora of submerged soils. Plant and Soil 30, 109 (1969b).

    Article  Google Scholar 

  • Shimabukuro, R. H.: Atrazine metabolism in resistant corn and sorghum. Plant Physiol. 43, 1925 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Skipper, H. D., C. M. Gilmour, and W. R. Furtick: Microbial versus chemical degradation of atrazine in soils. Soil Sci. Soc. Amer. Proc. 31, 653 (1967).

    CAS  Google Scholar 

  • Smith, N. R., and M. E. Wenzel: Soil microorganisms are affected by some of the new insecticides. Soil Sci. Soc. Amer. Proc. 12, 227 (1947).

    Google Scholar 

  • Sobieszezanskx, J.: The effect of herbicides on soil microflora. VIII. The effect of herbicides on growth and morphology of some species of bacteria. Acta Microbiol. Polon. 1, 99 (1969).

    Google Scholar 

  • Somers, E., D. V. Richmond, and J. A. Pickard: Carbonyl sulphide from the decomposition of captan. Nature 215, 214 (1967).

    Article  CAS  Google Scholar 

  • Spiller, D.: A digest of available infonnation on the insecticide malathion. Adv. Pest Control Research 4, 249 (1961).

    CAS  Google Scholar 

  • Srinivasan, R., and P. I. Chacko: The control of aquatic vegetation with 2,4-D. J. Bombay Nat. Hist. Soc. 51, 164 (1952).

    Google Scholar 

  • Stadnyk, L., R. S. Campbell, and B. T. Johnson: Pesticide effect on growth and “C assimilation in a freshwater alga. Bull. Environ. Contam. Toxicol. 6, 1 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Steenson, T. I., and N. Walker: Observations on the bacterial oxidation of chlorophenoxyacetic acids. Plant and Soil 8, 17 (1956).

    Article  CAS  Google Scholar 

  • Steenson, T. I., and N. Walker: The pathway of breakdown of 2:4-dichloro-and 4-chloro-2-methyl-phenoxyacetic acid by bacteria. J. Gen. Microbiol. 16, 146 (1957).

    PubMed  CAS  Google Scholar 

  • Tanner, H. A., and M. L. Hayes: Evaluation of toxaphene as a fish poison. Colo. Coop. Fish. Research Unit, Quart. Rept. 1, 31 (1955).

    Google Scholar 

  • Thiecs, B. J.: Microbial decomposition of herbicides. In Down to earth, p. 7, Dow Chemical Co. (1962).

    Google Scholar 

  • Thomas, E. W., B. C. Loughman, and R. G. Powell: Metabolic fate of 2,4dichlorophenoxyacetic acid in the stern tissue of Phaseolus vulgaris. Nature 204, 884 (1964).

    Article  CAS  Google Scholar 

  • Tiedje, J. M., and M. Alexander: Microbial degradation of organophosphorus insecticides and alkyl phosphates. Agron. Abstr., p. 94 (1967).

    Google Scholar 

  • Tiedje, J. M., and M. Alexander: Enzymatic cleavage of the ether bond of 2,4-dichlorophenoxyacetate. J. Agr. Food Chem. 17, 1080 (1969).

    Article  CAS  Google Scholar 

  • Tiedje, J. M., and M. Alexander, J. M. Duxbury, M. Alexander, and J. E. Dawson: 2,4-D metabolism:Pathway of degradation of chlorocatechols by Arthrobacter sp. J. Agr. Food Chem. 17, 1021 (1969).

    Article  CAS  Google Scholar 

  • Trela, J. M., W. J. Ralston, and H. B. Gunner: Metabolism of diazinon by soil microflora. Bacteriol. Proc., p. 6 (1968).

    Google Scholar 

  • Ukeles, R.: Growth of pure cultures of marine phytoplankton in the presence of toxicants. Applied Microbiol. 10, 532 (1962).

    CAS  Google Scholar 

  • Veith, G. D., and G. F. Lee: Water chemistry of toxaphene—Role of lake sediments. Environ. Sci. Technol. 5, 230 (1971).

    Article  CAS  Google Scholar 

  • Walker, R. L., and A. S. Newman: Microbial decomposition of 2,4-dichlorophenoxyacetic acid. Applied Microbiol. 4, 201 (1956).

    CAS  Google Scholar 

  • Walker, W. W., and B. J. Stojanovic: Unpublished data, Miss. St. Univ. (1971).

    Google Scholar 

  • Walsh, G. E., J. M. Keltner, Jr., and E. Matthews: Effects of herbicides on marine algae. In: Progress Rept. Bureau of Commercial Fisheries Center for Estuarine and Menhaden Research, Pesticide Field Station, Gulf Breeze, Fla., FY 1969, p. 10. U.S. Fish and Wildlife Service Circ. 335. U.S. Department of the Interior, Washington, D.C. (1970).

    Google Scholar 

  • Wedemeyer, G.: Uptake of 2,4-dichlorophenoxyacetic acid by Pseudomonas fluorescens. Applied Microbiol. 14, 486 (1966).

    CAS  Google Scholar 

  • Weiss, C. M., and J. H. Gakstatter: The decay of anticholinesterase activity of organic phosphorus insecticides on storage in waters of different pH. Adv. Water Pollution Research 1, 83 (1964).

    Google Scholar 

  • Yasuno, M., S. Hmakoso, M. SASA, and M. Uchida: Inactivation of some organo-phosphorous insecticides by bacteria in polluted water. Japan. J. Expt. Med. 35, 545 (1965).

    CAS  Google Scholar 

  • Zimdahl, , R. L., V. H. Freed, M. L. Montgomery, and W. R. Furtick: The degradation of triazine and uracil herbicides in soil. Weed Research 10, 18 (1970).

    Article  CAS  Google Scholar 

  • Zuckerman, B. M., K. Deubert, M. Mackiewicz, and H. Gunner: Studies on the biodegradation of parathion. Plant and Soil 33, 273 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Paris, D.F., Lewis, D.L. (1973). Chemical and microbial degradation of ten selected pesticides in aquatic systems. In: Gunther, F.A., Gunther, J.D. (eds) Residue Reviews. Residue Reviews, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-8493-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8493-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-05864-1

  • Online ISBN: 978-1-4615-8493-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics