Parathion residues on leafy crops

  • C. H. Van Middelem
Conference paper
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 2)


In Germany, during World War II, G. SchräDer developed the compound E-605 (O,O-diethyl-O-p-nitrophenyl thiophosphate) which is commonly known as parathion. It was soon discovered that this organophosphate was an extremely effective insecticide against a number of insect species. With the exception of DDT, parathion is probably still the most universally-used insecticide.


Cholinesterase Inhibition Leafy Vegetable Cholinesterase Activity Residue Removal Insecticide Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Cyanamid Co.: Digest of literature an parathion. Mimeo. 159 pp. (1951).Google Scholar
  2. American Cyanamid Co.: Parathion data presented to U.S. Food and Drug Administration. 124 pp. (1950).Google Scholar
  3. Averell, P. R., and M. V. Norris: Estimation of small amounts of O,O-diethyl O-p-nitrophenyl thiophosphate. Anal. Chem. 20, 753 (1948).CrossRefGoogle Scholar
  4. Barnes, J. M., and F. A. Denz: The chronic toxicity of p-nitrophenyl diethyl thiophosphate — a long term feeding experiment with rats. J. Hyg. 49, 430 (1951).CrossRefGoogle Scholar
  5. Birk, L. A., and J. G. Oughton: Parathion residues on Swede turnips. Sci Agr. 32, 52 (1952).Google Scholar
  6. Brittin, W. A., and J. D. Fairing: Report on insecticides in canned foods. A study of the effects of processing on spray residue. J. Assoc. Offic. Agr. Chemists 33, 599 (1950).Google Scholar
  7. Brown, H. V., and A. F. Bush: Parathion inhibition of Cholinesterase. Arch. Ind. Hyg. Occupational Med. 1, 633 (1950).Google Scholar
  8. Carman, G. E., W. H. Ewart, M. M. Barnes, and F. A. Gunther: Absorption of DDT and parathion by fruits. Adv. Chem. Ser. 1. 128 (1950).CrossRefGoogle Scholar
  9. Casida, J. E., and T. C. Allen: Absorption and translocation of insecticides by plants. Agr. Chemicals 7, 41 (1952).Google Scholar
  10. Ciferri, F.: Effect of soil-administered parathion on lettuce plants. Notiz. Malattiepiante 26, 15 (1954).Google Scholar
  11. Coates, H.: The chemistry of phosphorus insecticides. Ann. Appl. Biol. 36, 156 (1949).PubMedGoogle Scholar
  12. Cook, J. W., and N. D. Pugh: Quantitative study of cholinesterase inhibiting decomposition products of parathion formed by ultraviolet light. J. Assoc. Offic. Agr. Chemists 40, 277 (1959).Google Scholar
  13. Denz, F. A.: Poisoning by p-nitrophenyl diethyl thiophosphate (E-605): a contribution to the study of anticholinesterase compounds. J. Pathol. Bacteriol. 63, 81 (1951).PubMedCrossRefGoogle Scholar
  14. Diggle, W. M., and J. C. Gage: Cholinesterase inhibition by parathion (p-nitro-phenyldiethylthiophosphate). Biochem. J. 48, 25 (1951 a).Google Scholar
  15. Diggle, W. M., and J. C. Gage: Cholinesterase inhibition in vitro by O,O-diethyl O-p-nitrophenyl thiophosphate (parathion). Biochem. J. 49, 491 (1951 b).PubMedGoogle Scholar
  16. Diggle, W. M., and J. C. Gage: Cholinesterase inhibition by parathion in vivo. Nature 168, 998 (1951 c).Google Scholar
  17. Dormal van den Bruel, S.: The persistence of insecticide residues in fresh, blanched, and canned vegetables. Bull. Inst. Agron. et Stas. Réchèrches. Gembloux 27, 137 (1959).Google Scholar
  18. Dubois, K.: Pharmacology & toxicology of certain organic phosphorus insecticides. B. Pharmacology. J. Amer. Med. Assoc. 144, 105 (1950).CrossRefGoogle Scholar
  19. Edwards, F. I., jr.: Source of error in estimating small amounts of parathion. Anal. Chem. 21, 1415 (1949).CrossRefGoogle Scholar
  20. Fahey, J. F., D. W. Hamilton, and R. W. Rings: Longevity of parathion and related insecticides in spray residues. J. Econ. Entomol. 45, 700 (1952).Google Scholar
  21. Fallscheer, H. O., and J. W. Cook: Enzymatic methods for insecticides. Studies on the conversion of some thionophosphates and a dithiophosphate to in vitro cholinesterase inhibitors. J. Assoc. Offic. Agr. Chemists 39, 691 (1956).Google Scholar
  22. Ford, L. A., and R. T. Ottes: A comparison of procedures for the extraction of parathion from leafy vegetables. J. Assoc. Offic. Agr. Chemists 43, 700 (1960).Google Scholar
  23. Frawley, J. P., J. W. Cook, J. R. Blake, and O. G. Fitzhugh: Effect of light on chemical and biological properties of parathion. J. Agr. Food Chem. 6, 28 (1958).CrossRefGoogle Scholar
  24. Frawley, J. P., and E. C. Hagan: Rate of recovery of plasma, red cell, and brain tissue of rats following cholinesterase inhibition by organic phosphates. Fed. Proc. 10, 297 (1951).Google Scholar
  25. Frawley, J. P., and O. G. Fitzhugh: A comparative pharmacological and toxicological study of organic phosphate — anticholinesterase compounds. J. Pharmacol. Expt. Therap. 105, 156 (1952).Google Scholar
  26. Gardocki, J., and L. W. Hazelton: Urinary excretion of the metabolic products of parathion following its intravenous injection. J. Amer. Pharm. Assoc. 41, 490 (1951).Google Scholar
  27. Giang, P. A., and S. A. Hall: Enzymatic determination of organophosphorus insecticides. Anal. Chem. 23, 1830 (1951).CrossRefGoogle Scholar
  28. Ginsburg, J. M., R. S. Filmer, and J. P. Reed: Longevity of parathion, DDT, and dichlorodiphenyl-dichloroethane residues on field and vegetable crops. J. Econ. Entomol. 43, 90 (1950).Google Scholar
  29. Gleissner, B. D., F. Wilcoxon, and E. H. Glass: O,O-diethyl O-p-nitrophenyl thiophosphate, a promising new insecticide. Agr. Chemicals 2, 61 (1947).Google Scholar
  30. Goldsworthy, M. C., and A. C. Foster: Organic insecticides. Scientists seek to determine the effect of soil accumulations of pesticides on plants. Citrus Leaves 30, 8 (1950).Google Scholar
  31. Granger, M. M., and R. W. Leiby: HOW plants absorb parathion. Agr. Chemicals 4, 34 (1952).Google Scholar
  32. Griffiths, J. T., jr., C. R. Stearns jr., and W. L. Thompson: Parathion hazards encountered spraying citrus in Florida. J. Econ. Entomol. 44, 160 (1951).Google Scholar
  33. Grob, D.: The anticholinesterase activity in vitro of the insecticide parathion (p-nitrophenyl diethyl thionophosphate). Bull. Johns Hopkins Hosp. 87, 95 (1950 a).PubMedGoogle Scholar
  34. Grob, D.: Pharmacology and toxicology of certain organic phosphorous insecticides. C. Toxicology. J. Amer. Med. Assoc. 144, 105 (1950 c).Google Scholar
  35. Grob, D.:, W. L. Garlick, and A. M. Harvey: The toxic effects in man of the anticholinesterase insecticide parathion (p-nitrophenyl diethyl thionophosphate). Bull. Johns Hopkins Hosp. 87, 106 (1950 b).Google Scholar
  36. Gunther, F. A., M. M. Barnes, and G. E. Carman: Removal of DDT and parathion residues from apples, pears, lemons, and oranges. Adv. Chem. Ser. 1. 137 (1950).CrossRefGoogle Scholar
  37. Gunther, F. A., and R. C. Blinn: Mass-production techniques for estimation of parathion residues. Adv. Chem. Ser. 1. 72 (1950).CrossRefGoogle Scholar
  38. Hazelton, L. W., E. G. Holland, and R. C. Hellerman: Studies on toxicity of parathion (O,O-diethyl O-p-nitrophenyl thiophosphate). Fed. Proc. 9, 283 (1950).Google Scholar
  39. Kemka, R.: Loss of excess parathion from plants. Pol’nohospodarstvo 4, 998 (1957)Google Scholar
  40. Klein, A. K.: Report on extraction procedures for chloro-organic pesticides. J. Assoc. Offic. Agr. Chemists 41, 551 (1958).Google Scholar
  41. Leach, P. H.: Organic phosphorus poisoning in general practice. Calif. Med. 78, 491 (1953).PubMedGoogle Scholar
  42. Lehman, A. J., A. Hartzell, and J. C. Ward: Pharmacology & toxicology of certain organic phosphorus insecticides. E. Effects on beneficial forms of life, crops, and soil and residue hazards. J. Amer. Med. Assoc. 144, 108 (1950).Google Scholar
  43. Lieban, J., R. K. Waldman, and L. Krause: Urinary excretion of paranitro- phenyl following exposure to parathion. Arch. Ind. Hyg. Occupational Med. 7, 93 (1953).Google Scholar
  44. Metcalf, R. L., and R. B. March: Further studies on the mode of action of organic thionophosphate insecticides. Ann. Entomol. Soc. Amer. 46, 63 (1953 a).Google Scholar
  45. Metcalf, R. L., and R. B. March: The isomerization of organic thionophosphate insecticides. J. Econ. Entomol. 46, 288 (1953 b).Google Scholar
  46. Mistric, W. J., jr., and J. C. Gaines: Effect of wind and other factors on the toxicity of certain insecticides. J. Econ. Entomol. 46, 341 (1953).Google Scholar
  47. Nyquist, R., and V. G. Heller: Insecticide residue reduction in food processing. Agr. Chemicals 8, 53 (1953).Google Scholar
  48. O’Brien, R. D.: Toxic phosphorus esters — chemistry, metabolism, and biological effects. New York—London: Academic Press 1960.Google Scholar
  49. Questal, D. D., and R. V. Connin: A chemical treatment of soil which produces plant tissue lethal to European corn borer. J. Econ. Entomol. 40, 914 (1947).Google Scholar
  50. Rohwer, S. A., and H. L. Haller: Pharmacology and toxicology of certain organic phosphorus insecticides. General description of their activity and usefulness. J. Amer. Med. Assoc. 144, 104 (1950).CrossRefGoogle Scholar
  51. Rusin, N. M., and G. P. Andronova: Hygienic evaluation of food products treated with thiofos. Gigiena i Sanit. 10, 28 (1954).Google Scholar
  52. Sharpe, R. H., and C. H. van Middelem: Application of variance components to horticultural problems with special reference to a parathion residue study. Proc. Amer. Soc. Hort. Sci. 66, 415 (1955).Google Scholar
  53. Sloan, M. J., W. A. Rawlins, and L. B. Norton: Residue studies on DDT and parathion applied to lettuce for control of the six-spotted leafhopper. J. Econ. Entomol. 44, 691 (1951 a).Google Scholar
  54. Sloan, M. J., W. A. Rawlins, and L. B. Norton: Factors affecting the loss of DDT and parathion residues on lettuce. J. Econ. Entomol. 44, 701 (1951 b).Google Scholar
  55. Smith, F. F., and P. A. Clifford: Translocation of parathion from foliage applications. J. Econ. Entomol. 43, 708 (1950).Google Scholar
  56. Smith, F. F., F. I. Edwards, P. Giang, and R. A. Fulton: Residues of organic phosphorus compounds and DDT on greenhouse vegetables. J. Econ. Entomol. 45, 703 (1952).Google Scholar
  57. Starnes, O.: Absorption and translocation of insecticide through the root systems of plants. J. Econ. Entomol. 43, 338 (1950).Google Scholar
  58. Stitt, L. L., and J. Evanson: Phytotoxicity and off-quality of vegetables grown in soil treated with insecticides. J. Econ. Entomol. 42, 614 (1949).PubMedGoogle Scholar
  59. Terriere, L. C., and D. W. Ingalsbe: Translocation and residual action of soil insecticides. J. Econ. Entomol. 46, 751 (1953).Google Scholar
  60. Thompson, B. D., and C.H. van Middelem: Removal of toxaphene and parathion residues from tomatoes, green beans, celery and mustard with detergent washings. Proc. Amer. Soc. Hort. Sci. 65, 357 (1955).Google Scholar
  61. van Middelem, C. H.: Annual progress report. Southern Regional Research Proj. S-22. Unpublished data (1960).Google Scholar
  62. van Middelem, C. H., and R. E. Waites: Residues of toxaphene, chlordane, parathion, malathion, and demeton on several fresh vegetables. Proc. Amer. Soc. Hort. Sci. 65, 365 (1955).Google Scholar
  63. van Middelem, C. H., and J. W. Wilson: Extraction and cleanup studies for parathion residues on leafy vegetables. J. Agr. Food Chem. In press (1963).Google Scholar
  64. van Middelem, C. H., and J. W. Wilson: Parathion residues on celery. J. Econ. Entomol. 48, 88 (1955)Google Scholar
  65. van Middelem, C. H., and W. D. Hanson: Sampling studies related to insecticide residues on cabbage and celery. J. Econ. Entomol. 49, 612 (1956).Google Scholar
  66. Waites, R. E., and C. H. van Middelem: Residue studies of toxaphene, parathion and malathion on some Florida vegetables. J. Econ. Entomol. 48, 590 (1955).Google Scholar

Copyright information

© Springer-Verlag OHG Berlin · Göttingen · Heidelberg 1963

Authors and Affiliations

  • C. H. Van Middelem
    • 1
  1. 1.Department of Food Technology and NutritionUniversity of Florida Agricultural Experiment StationGainesvilleUSA

Personalised recommendations