Skip to main content
  • 70 Accesses

Abstract

A regional-scale sulfur transport and deposition model has been developed and applied to several receptor regions in eastern North America. Model estimates of the fraction of source region emissions of sulfur dioxide reaching receptor areas (source-receptor relationships) as ambient SO2 or SO2- 4 and/or depositing there by precipitation or dryfall have been computed for nine potentially sensitive receptor regions in eastern North America. This modeling has illustrated that the source regions with the highest natural potential to contribute are those which are closest to the receptor region. The potential for a source region to contribute multiplied by its emissions density has yielded estimates of actual culpability. The source contributions are generally dominated by high-emission areas in the United States and Canadian provinces nearest the receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrie, L.A., 1981, The prediction of rain acidity and SO2 scavenging in eastern North America. Atmos. Envir. 15:31–41.

    Article  CAS  Google Scholar 

  • Benkovitz, C.M., 1982, Compilation of an inventory of anthropogenic emissions in the United States and Canada. Atmos. Envir. 16:1551–1564.

    Article  CAS  Google Scholar 

  • Bhumralker, C.M., Mancuso, R.L., Wolf, D.E., Johnson, W.B., and Prankrath, J., 1981, Regional air pollution model for calculating short-term (daily) patterns and transfrontier exchanges of airborne sulfur in Europe. Tellus 33:142–161.

    Article  Google Scholar 

  • Cass, G.R., 1981, Sulfate air quality control strategy design. Atmos. Envir. 15:1227–1249.

    Article  CAS  Google Scholar 

  • Draxler, R.R. and Taylor, A.D., 1982, Horizontal dispersion parameters for long-range transport modeling. J. Appl. Meteor. 21:367–372.

    Article  Google Scholar 

  • Eliassen, A. and Saltbones, J., 1983, Modeling of long-range transport of sulphur over Europe: a two-year model run and some model experiments. Atmos. Envir. 17:1457–1473.

    Article  CAS  Google Scholar 

  • Gillani, N.V., Husar, R.B., Husar, J.D., Patterson, D.E., and Wilson, W.E., 1978, Project MISTT: Kinetics of particulate sulfur formation in a power plant plume out to 300 km. Atmos Envir. 12:589–598.

    Article  CAS  Google Scholar 

  • Heffter, J.L., 1980, Air Resources Laboratories Atmospheric Transport and Dispersion Model (ARL-ATAD). NOAA Tech. Memo. ERL ARL-81, National Oceanic Atmospheric Administration, Rockville, MD. 17 pp.

    Google Scholar 

  • Lamb, R.G. and Seinfeld, J.H., 1973, Mathematical modeling of urban air pollution-general theory. Envir. Sci. Tech. 7:253–261.

    Article  CAS  Google Scholar 

  • McNaughton, D.J., 1984, A second look at a theoretical approach for sulfate aerosol scavenging, pp. 483 to 495. In: APCA Specialty Conference on the Meteorology of Acid Deposition, P.J. Samson, ed., Air Pollution Control Assoc, Pittsburgh, PA.

    Google Scholar 

  • Samson, P.J., 1980, Trajectory analysis of summertime sulfate concentrations in the northeastern United States. J. Appl. Meteor. 19:1382–1394.

    Article  Google Scholar 

  • Samson, P.J. and Moody, J.L., 1981, Trajectories and two-dimensional probability fields, pp.43 to 54. In: Air Pollution Modeling and Its Application I, C. DeWispelaere, ed., Plenum Press, New York, NY.

    Chapter  Google Scholar 

  • Samson, P.J. and Small, M.J., 1984, Atmospheric trajectory models for diagnosing the sources of acid precipitation, pp. 1 to 24. In: Modeling of Total Acid Precipitation Impacts, J.L. Schnoor, ed., Butterworth Publ., Boston, MA.

    Google Scholar 

  • Scott, B.C., 1978, Parameterization of sulfate removal by precipitation. J. Appl. Meteor. 17:1375–1389.

    Article  CAS  Google Scholar 

  • Shannon, J.D., 1981, A model of regional long-term average sulfur atmospheric pollution, surface removal, and net horizontal flux. Atmos. Envir. 15:689–701.

    Article  CAS  Google Scholar 

  • U.S./Canada Memorandum of Intent, 1982, Regional Modeling Subgroup Report. Report 2F-M, U.S.E.P.A., Washington, DC.

    Google Scholar 

  • Voldner, E.C., Olson, M.P., Oikawa, K., and Loiselle, M., 1981, Comparison between measured and computer concentrations of sulfur compounds in eastern North America. J. Geophys. Res. 86:5339–5346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Samson, P.J. (1985). Methods for Diagnosing the Sources of Acid Deposition. In: Adams, D.D., Page, W.P. (eds) Acid Deposition: Environmental, Economic, and Policy Issues. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8350-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8350-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8352-3

  • Online ISBN: 978-1-4615-8350-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics