Skip to main content

Surface Characterization of Certain Metal Oxides Determined by the Isothermal Adsorption and Desorption of Argon

  • Chapter
Advances in Materials Characterization

Part of the book series: Materials Science Research ((MSR,volume 15))

Abstract

The importance of surface areas and porosities of powdered solids are of vital interest to many scientific and technological disciplines. Knowledge of the magnitude of these properties is required when studying almost any interfacial phenomenon involving gas-solid or liquid-solid interactions. Among the techniques that have been utilized to determine the surface areas of oxide materials are electron microscopy, X-ray powder diffraction, small angle X-ray scattering, heat of immersion, adsorption from solution, and gas adsorption. The X-ray methods yield a volume-average crystallite diameter, while the adsorption techniques yield a surface-average value. On the other hand, electron microscopy yields a particle size distribution, from which a volume-average diameter and a surface-average value can be calculated by assuming a certain particle shape. Electron microscopy is often not readily accessible, while the X-ray techniques are applicable only to crystalline materials having crystallite sizes in the approximate diameter range of 3–60 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 60:309 (1938).

    Article  CAS  Google Scholar 

  2. S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, On a Theory of the van der Waals Adsorption of Gases, J. Am. Chem. Soc., 62:1723 (1940).

    Article  CAS  Google Scholar 

  3. S. Brunauer and P. H. Emmett, Chemisorptions of Bases on Iron Synthetic Ammonia Catalysts, J. Am. Chem. Soc., 62:1732 (1940).

    Article  CAS  Google Scholar 

  4. S. Brunauer, “The Adsorption of Gases and Vapors,” Princeton University Press, Princeton (1943).

    Google Scholar 

  5. W. A. Steele, “The Interaction of Gases with Solid Surfaces,” Pergamon Press, Oxford (1974).

    Google Scholar 

  6. “Characterization of Powder Surfaces,” ed. “by G. D. Parfitt and K. S. W. Sing, Academic Press, London (1976).

    Google Scholar 

  7. A. W. Adamson, “Physical Chemistry of Surfaces,” 3rd Ed., Wiley and Sons, New York (1976).

    Google Scholar 

  8. R. J. Gorte, Design Parameters for Temperature Programmed Desorption from Porous Catalysts, J. Catal., 75:l64 (1982).

    Google Scholar 

  9. S. Parkash, Determining Surface Area, Chemtech, 10(9):572 (1980).

    CAS  Google Scholar 

  10. I. Langmuir, Chemical Reactions at Low Pressures, J. Am. Chem. Soc., 37:1139 (1915).

    Article  CAS  Google Scholar 

  11. IUPAC Manual of Symbols and Terminology, Pure Appl. Chem., 31: 579 (1972).

    Google Scholar 

  12. M. M. Dubinin, On Physical Feasibility of Brunauer’s Micropore Analysis Method, J. Colloid Interface Sci., 46:351 (1974).

    Article  CAS  Google Scholar 

  13. B. C. Lippens and J. H. DeBoer, Studies on Pore Systems in Catalysts. V. The t Method, J. Catal., 4:319 (1965).

    Article  CAS  Google Scholar 

  14. S. J. Gregg and K. S. W. Sing, “Adsorption, Surface Area, and Porosity,” Academic Press, London (1967).

    Google Scholar 

  15. R. S. Mikhail and D. A. Cadenhead, The Interaction of Methanol Vapor with Taurus-Littrow Orange Soil, J. Colloid Interface Sci., 55:462 (1976).

    Article  CAS  Google Scholar 

  16. S. J. Gregg, A Simple Method for Comparing the Shapes of Closely Related Adsorption Isotherms, Chem. Commun., 699 (1975).

    Google Scholar 

  17. S. Brunauer, R. S. Mikhail, and E. E. Boder, Pore Structure Analysis Without a Pore Shape Model, J. Colloid Interface Sci., 24: 451 (1967);

    Article  CAS  Google Scholar 

  18. and S. Brunauer, R. S. Mikhail, and E. E. Boder Some Remarks About Capillary Condensation and Pore Structure Analysis, J. Colloid Interface Sci., 25:353 (1967).

    Article  CAS  Google Scholar 

  19. E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Determinations in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc., 73: 373 (1951).

    Article  CAS  Google Scholar 

  20. R. W. Cranston and F. A. Inkley, The Determination of Pore Structures from Nitrogen Adsorption Isotherms, Advan. Catal., 9: 143 (1957).

    Article  Google Scholar 

  21. A. V. Kiselev, Capillary Condensation Heat Maximums, Proc. 2nd Int. Congr. Catal. Act., 2:l89 (1957).

    Google Scholar 

  22. E. E. Boder, I. Older, and J. P. Skalny, An Analytical Method for Pore Structure Analysis, J. Colloid Interface Sci., 32: 367 (1970).

    Article  Google Scholar 

  23. J. C. Phillips and J. P. Skalny, Computer Program for Pore Structure Analysis, J. Colloid Interface Sci., 38:664 (1972).

    Article  Google Scholar 

  24. R. G. Herman, K. Klier, G. W. Simmons, B. P. Finn, J. B. Bulko, and T. P. Kobylinski, Catalytic Synthesis of Methanol from CO/H2. I. Phase Composition, Electronic Properties, and Activities of the Cu/Zn0/M2O3 Catalysts, J. Catal., 56:407 (1979).

    Article  CAS  Google Scholar 

  25. A. C. Zettlemoyer, F. J. Micale, and K. Klier, Adsorption of Water on Well-characterized Solid Surfaces, in “Water-A Comprehensive Treatise,” 5:249, ed. by F. Franks, Plenum Press, London (1975).

    Google Scholar 

  26. F. Din, “Thermodynamic Functions of Gases,” Vol. 2, Butterworths, London (1956).

    Google Scholar 

  27. K. S. W. Sing, Surface Characterization: Physical, in “Characterization of Powder Surfaces,” ed. by G. D. Parfitt and K. S. W. Sing, Academic Press, London, pp 1–56 (1976).

    Google Scholar 

  28. K. S. W. Sing, Adsorption at the Gas/Solid Interface, Colloid Sci., 1:48 (1973).

    Google Scholar 

  29. F. J. Micale, Determination of Vm and Effective Cross-sectional Area of Ar, N2, and Kr for Determination of Specific Surface Areas, 49th Colloid and Surface Science Symposium of the American Chemical Society, Potsdam, NY (1974).

    Google Scholar 

  30. P. H. Emmett, Measurement of the Surface Area of Solid Catalysts, Catalysis, 1:31 (1954).

    Google Scholar 

  31. K. S. W. Sing, Utilisation of Adsorption Data in the BET Region, in “Surface Area Determination,” IUPAC Symp. Proced., Butter-worths, London, pp 25–34 (1969).

    Google Scholar 

  32. D. A. Payne, K. S. W. Sing, and D. H. Turk, Comparison of Argon and Nitrogen Adsorption Isotherms on Porous and Nonporous Hydroxylated Silica, J. Colloid Interface Sci., 43:287 (1973).

    Article  CAS  Google Scholar 

  33. R. M. Barrer, Aspects of Sorption in Porous Crystals, in “The Structure and Properties of Porous Materials,” ed. by D. H. Everett and F. S. Stone, Butterworths, London, pp 6–28 (1958).

    Google Scholar 

  34. J. B. Bulko, R. G. Herman, K. Klier, and G. W. Simmons, Optical Properties and Electronic Interactions of Microcrystalline Cu/ZnO Catalysts, J. Phys. Chem., 83:3118 (1979).

    Article  CAS  Google Scholar 

  35. S. Mehta, G. W. Simmons, K. Klier, and R. G. Herman, Catalytic Synthesis of Methanol from CO/H2. II. Electron Microscopy (TEM,STEM, Microdiffraction, and Energy Dispersive Analysis) of the Cu/ZnO and Cu/Zn0/Cr2O3 Catalysts, J. Catal., 57:339 (1979).

    Article  CAS  Google Scholar 

  36. J. H. deBoer, The Shapes of Capillaries, in “The Structure and Properties of Porous Materials,” ed. by D. H. Everett and F. S. Stone, Butterworths, London, pp 68–94 (1958).

    Google Scholar 

  37. R. M. Barrer and D. M. MacLeod, Intercalation and Sorption by Montmorillonite, Trans. Faraday Soc., 50:980 (1954).

    Article  CAS  Google Scholar 

  38. B. C. Lippens, Ph.D. Dissertation, University of Delft (1961).

    Google Scholar 

  39. V. R. Dietz and E. Berlin, The Interaction of Krypton and an Exfoliated Graphite at 77.4°K, J. Colloid Interface Sci., 44:57 (1973).

    Article  Google Scholar 

  40. F. A. P. Maggs, Reversal of Temperature Dependence for Physical Adsorption of Nitrogen, Research Correspondence, 6:135 (1953).

    Google Scholar 

  41. T. Kotanigawa, M. Yamamoto, M. Utiyama, H. Hattori, and K. Tanabe, The Influence of Preparation Methods on the Pore Structure of Alumina, Appl. Catal., 1:185 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Herman, R.G., Pendleton, P., Bulko, J.B. (1983). Surface Characterization of Certain Metal Oxides Determined by the Isothermal Adsorption and Desorption of Argon. In: Rossington, D.R., Condrate, R.A., Snyder, R.L. (eds) Advances in Materials Characterization. Materials Science Research, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8339-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8339-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8341-7

  • Online ISBN: 978-1-4615-8339-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics