Skip to main content

Water and Microbial Stress

  • Chapter

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 5))

Abstract

Reference to a dictionary reveals that an object under stress is subjected to “demand upon energy” or is “constrained.” It is precisely these two aspects of microbial ecology that I have considered in this review, the stress being imposed by some factor directly associated with the water regime of the immediate environment. Such a topic is relevant to many branches of microbiology. Thus, those working in microbial physiology, soil microbiology, plant pathology, food preservation, biodegradation, and marine and lacustrine microbiology all find water and its biological availability to be an important factor influencing microbial activity and hence microbial ecology.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker, L. W., 1962, Enzymic reactions in foods of low moisture content, Adv. Food. Res. 11:263–330.

    Article  CAS  Google Scholar 

  • Acker, L. W., 1969, Water activity and enzyme activity, Food Technol. (Chicago) 23:27–40.

    Google Scholar 

  • Acock, B., 1975, An equilibrium model of leaf water potentials which separates intra- and extracellular potentials, Aust. J. Plant Physiol. 2:253–263.

    Article  Google Scholar 

  • Alemohammad, M. M., and Knowles, C. J., 1974, Osmotically induced volume and turbidity changes ofEscherichia coli due to salts, sucrose and glycerol, with particular reference to the rapid permeation of glycerol into the cell, J. Gen. Microbiol. 82:125–142.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R. N., and Newhook, F. J., 1973, Chemotaxis of zoospores of Phytophthora cinnamomi to ethanol in capillaries of spore dimensions, Trans. Br. My col. Soc. 61:287–302.

    Article  CAS  Google Scholar 

  • Anand, J. C., and Brown, A. D., 1968, Growth rate patterns of the so-called osmophilic and non- osmophilic yeasts in solutions of polyethylene glycol, J. Gen. Microbiol. 52:205–212.

    Article  CAS  Google Scholar 

  • Aslyng, H. C., 1963, Soil physics terminology, Int. Soc. Soil Sei. Bull. 23:1–4.

    Google Scholar 

  • Avron, M., and Ben-Amotz, A., 1979, Metabolic adaptation of the alga Dunaliella to low water activity, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 83–91, Verlag Chemie, Weinheim.

    Google Scholar 

  • Ayerst, G., 1968, Prevention of biodeterioration by control of environmental conditions, in: Bio- deterioration of Materials (A. H. Walters and J. J. Elphick, eds.), pp. 223–241, Elsevier, Amsterdam.

    Google Scholar 

  • Ayerst, G., 1969, The effects of water activity and temperature on spore germination and growth in some mould fungi, J. Stored Prod. Res. 5:127–141.

    Article  Google Scholar 

  • Ayres, P. G., 1978, Water relations of diseased plants, in: Water and Plant Disease (T. T. Kozlowski, ed.), Water Deficits and Plant Growth, Vol. 5, pp. 1–60, Academic Press, New York.

    Google Scholar 

  • Baker, K. F., and Cook, R. J., 1974, Biological Control of Plant Pathogens, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Bayley, S. T., and Morton, R. A., 1979, Biochemical evolution of halobacteria, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 109–124, Verlag Chemie, Weinheim.

    Google Scholar 

  • Brock, T. D., 1979, Ecology of saline lakes, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 29–47, Verlag Chemie, Weinheim.

    Google Scholar 

  • Brown, A. D., 1976, Microbial water stress, Bacteriol. Rev. 40:803–846.

    PubMed  CAS  Google Scholar 

  • Brown, A. D., 1978, Compatible solutes and extreme water stress in eukaryotic micro-organisms, Adv. Microb. Physiol. 17:181–242.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. D., 1979, Physiological problems of water stress, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 65–81, Verlag Chemie, Weinheim.

    Google Scholar 

  • Brown, L. M., and Hellebust, J. A., 1978, Sorbitol and proline as intracellular osmotic solutes in the green alga Stichococcus bacillaris, Can. J. Bot. 56:676–679.

    Article  CAS  Google Scholar 

  • Brown, R. W., and van Haveren, B. P., 1972, Psychrometry in Water Relations Research (eds.), Utah Agricultural Experiment Station, Logan, Utah.

    Google Scholar 

  • Bull, H. B., and Breese, K., 1968, Protein hydration, I. Binding sites, Arch. Biochem. Biophys. 128:488–496.

    Article  PubMed  CAS  Google Scholar 

  • Bull, H. B., and Breese, K., 1970, Water and solute binding by proteins, I. Electrolytes, Arch. Biochem. Biophys. 137:299–305.

    Article  PubMed  CAS  Google Scholar 

  • Burnett, J. H., 1976, Fundamentals of Mycology (2nd ed.), Edward Arnold, London.

    Google Scholar 

  • Byrne, P., and Jones, E. B. G., 1975, Effect of salinity on spore germination of terrestrial and marine fungi, Trans. Br. My col. Soc. 64:497–503.

    Article  Google Scholar 

  • Chen, A. W., and Griffin, D. M., 1966, Soil physical factors and the ecology of fungi, V. Further studies in relatively dry soils,Trans. Br. My col. Soc. 49:419–426.

    Article  Google Scholar 

  • Cook, R. J., 1973, Influence of low plant and soil water potentials on diseases caused by soilborne fungi, Phytopathology 63:451–458.

    Article  Google Scholar 

  • Cook, R. J., and Duniway, J. M., 1981, Water relations in the life-cycles of soil borne plant pathogens, in: Water Potential Relations in Soil Microbiology (J. F. Parr, W. R. Gardner, and L. F. Elliott, eds.), pp. 119–139, Soil Science Society of America, Special Publication No. 9, Madison, Wisconsin.

    Google Scholar 

  • Cook, R. J., and Papendiek, R. I., 1972, Influence of water potential of soils and plants on root disease,Annu. Rev. Phytopathol. 10:349–374.

    Article  Google Scholar 

  • Cooke, R., and Kuntz, I. D., 1974, The properties of water in biological systems, Annu. Rev. Biophys. Bioeng. 3:95–126.

    Article  PubMed  CAS  Google Scholar 

  • Cother, E. J., and Griffin, D. M., 1974, Chlamydospore germination in Phytophthora drechsleri, Trans. Br. Mycol. Soc. 63:273–279.

    Article  Google Scholar 

  • Duniway, J. M., 1976, Movement of zoospores of Phytophthora cryptogea in soils of various textures and matric potentials, Phytopathology 66:877–882.

    Article  Google Scholar 

  • Duniway, J. M., 1979, Water relations of water molds, Annu. Rev. Phytopathol. 17:431–460.

    Article  Google Scholar 

  • Edgley, M., and Brown, A. D., 1978, Response of xerotolerant and nontolerant yeasts to water stress, J. Gen. Microbiol. 104:343–345.

    Article  CAS  Google Scholar 

  • Fisher, L. R., and Israelachvili, J. N., 1979, Direct experimental verification of the Kelvin equation for capillary condensation,Nature (London) 277:548–549.

    Article  CAS  Google Scholar 

  • Gerhardt, P., and Judge, J. A., 1964, Porosity of isolated cell walls of Saccharomyces cerevisiae and Bacillus megaterium, J. Bacteriol. 87:945–951.

    PubMed  CAS  Google Scholar 

  • Gould, G. W., and Measures, J. C., 1977, Water relations of single cells, Philos. Trans. R. Soc. London Ser. B: 278:151–166.

    Article  CAS  Google Scholar 

  • Griffin, D. M., 1963, Soil moisture and the ecology of fungi, Biol. Rev. Cambridge Philos. Soc. 38:141–166.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, D. M., 1968, A theoretical study relating to concentration and diffusion of oxygen to the biology of organisms in soil, New Phytol. 67:561–577.

    Article  CAS  Google Scholar 

  • Griffin, D. M., 1972, Ecology of Soil Fungi, Chapman and Hall, London.

    Google Scholar 

  • Griffin, D. M., 1977, Water potential and wood-decay fungi, Annu. Rev. Phytophathol. 15:319329.

    Google Scholar 

  • Griffin, D. M., 1978, Effect of soil moisture on survival and spread of pathogens, in: Water and Plant Disease (T. T. Kozlowski, ed.), Water Deficits and Plant Growth, Vol. 5, pp. 175–197, Academic Press, New York.

    Google Scholar 

  • Griffin, D. M., 1981, Water potential as a selective factor in the microbial ecology of soils, in: Water Potential Relations in Soil Microbiology (J. F. Parr, W. R. Gardner, and L. F. Elliott, eds.), pp. 141–151, Soil Science Society of America, Special Publication No. 9, Madison, Wisconsin.

    Google Scholar 

  • Griffin, D. M., and Luard, E. J., 1979, Water stress and microbial ecology, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 49–63, Verlag Chemie, Weinheim.

    Google Scholar 

  • Gustafsson, L., 1979, The ATP pool in relation to the production of glycerol and heat during growth of the halotolerant yeast Debaryomyces hansenii, Arch. Microbiol. 120:15–23.

    Article  CAS  Google Scholar 

  • Gustafsson, L., and Norkrans, B., 1976, On the mechanisms of salt tolerance. Production of glycerol and heat during growth of Debaryomyces hansenii, Arch. Microbiol. 110:177–183.

    Article  CAS  Google Scholar 

  • Gutknecht, J., Hastings, D. F., and Bisson, M. A., 1978, Ion transport and turgor pressure regulation in giant algal cells, in: Transport across Multi-Membrane Systems (G. Giesbisch, D. C. Tosteson and H. H. Ussing, eds.), Membrane Transport in Biology, Vol. 3, pp. 125–174, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Harris, R. F., 1981, Effect of water potential on microbial growth and metabolism, in: Water Potential Relations in Soil Microbiology (J. F. Parr, W. R. Gardner, and L. F. Elliott, eds.), pp. 23–95, Soil Science Society of America, Special Publication No. 9, Madison, Wisconsin.

    Google Scholar 

  • Harris, R. F., Gardner, W. R., Adebayo, A. A., and Sommers, L. E., 1970, Agar dish isopiestic equilibration method for controlling the water potential of solid substrates, Appl. Microbiol. 19:536–537.

    PubMed  CAS  Google Scholar 

  • Harrower, K. M., and Nagy, L. A., 1979, Effects of nutrients and water stress on growth and sporulation of coprophilous fungi, Trans. Br. Mycol. Soc. 72:459–462.

    Article  CAS  Google Scholar 

  • Hellebust, J. A., 1976, Osmoregulation, Annu. Rev. Plant Physiol. 27:485–505.

    Article  CAS  Google Scholar 

  • Hocking, A. D., and Pitt, J. I., 1979, Water relations of some Penicillium species at 25 °C, Trans. Br. Mycol. Soc. 73:141–145.

    Article  Google Scholar 

  • Hüsken, D., Steudle, E., and Zimmermann, U., 1978, Pressure probe technique for measuring water relations of cells in higher plants,Plant Physiol. 61:158–163.

    Article  PubMed  Google Scholar 

  • Jennings, D. H., 1973, Cations and filamentous fungi: Invasion of the sea and hyphal functioning, in: Ion Transport in Plants (W. P. Anderson, ed.), pp. 323–335, Academic Press, London.

    Google Scholar 

  • Jennings, D. H., 1979, Membrane transport and hyphal growth, in: Fungal Walls and Hyphal Growth (J. H. Burnett and A. P. J. Trinci, eds.), pp. 279–294, Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones, E. B. G., Byrne, P., and Alderman, D. J., 1971, The response of fungi to salinity, Vie Milieu (Suppl. No. 22), pp. 265–280.

    Google Scholar 

  • Kauss, H., 1977, Biochemistry of osmotic regulation, in: International Review of Biochemistry— Plant Biochemistry II, Vol. 13 (D. H. Northcote, ed.), pp. 119–140, University Park Press, Baltimore.

    Google Scholar 

  • Kirst, G. O., 1977, Ion composition of unicellular marine and fresh-water algae, with special reference to Platymonas subcordiformis cultivated in media with different osmotic strengths, Oecologia (Berlin) 28:177–189.

    Article  Google Scholar 

  • Klotz, I. M., 1950, Chemical Thermodynamics, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Kuntz, I. D., and Kauzmann, W., 1974, Hydration of proteins and polypeptides, Adv. Protein Chem. 28:239–345.

    Article  PubMed  CAS  Google Scholar 

  • Kushner, D. J., 1968, Halophilic bacteria, Adv. Appl. Microbiol. 10:73–99.

    Article  PubMed  CAS  Google Scholar 

  • Lanyi, J. K., 1979, Physicochemical aspects of salt-dependence in halobacteria, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 93–107, Verlag Chemie, Weinheim.

    Google Scholar 

  • Larsen, H., 1967, Biochemical aspects of extreme halophilism, Adv. Microb. Physiol. 1:97–132.

    Article  CAS  Google Scholar 

  • Lewis, D. H., and Smith, D. C., 1967, Sugar alcohols (polyols) in fungi and green plants, I. Distribution, physiology and metabolism,New Phytol. 66:143–184.

    Article  CAS  Google Scholar 

  • Lewis, G. N., and Randall, M., 1961, Thermodynamics (revised by K. S. Pitzer and L. Brewer, 2nd ed.), McGraw-Hill, New York.

    Google Scholar 

  • Liu, M. S., and Hellebust, J. A., 1976, Effects of salinity and osmolarity of the medium on amino acid metabolism in Cyclotella cryptica, Can. J. Bot. 54:938–948.

    Article  CAS  Google Scholar 

  • Luard, E. J., and Griffin, D. M., 1981, Effect of water potential on fungal growth and turgor, Trans. Br. Mycol. Soc. 76: 33–40.

    Article  Google Scholar 

  • Marshall, T. J., 1959, Relations between Water and Soil, Commonwealth Bureau Agricultural Bureaux, Farnham Royal.

    Google Scholar 

  • Measures, J. C., 1975, Role of amino acids in osmoregulation of non-halophilic bacteria, Nature (London) 257:398–400.

    Article  CAS  Google Scholar 

  • Mitchell, P., and Moyle, J., 1956, Osmotic structure and function in bacteria, Symp. Soc. Gen. Microbiol. 6:150–180.

    Google Scholar 

  • Moustafa, A. F., 1975, Osmophilous fungi in the salt marshes of Kuwait,Can. J. Microbiol. 21:1573–1580.

    Article  PubMed  CAS  Google Scholar 

  • Noy-Meir, I., and Ginzburg, B. Z., 1967, An analysis of the water potential isotherm in plant tissue, I. The theory, Aust. J. Biol. Sci. 20:695–721.

    Google Scholar 

  • Onishi, H., 1963, Osmophilic yeasts, Adv. Food Res. 12:53–94.

    Article  PubMed  CAS  Google Scholar 

  • Papendick, R. I., and Campbell, G. S., 1975, Water potential in the rhizosphere and plant and methods of measurement and experimental control, in: Biology and Control of Soil-borne Plant Pathogens (G. W. Bruehl, ed.), pp. 39–49, American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Papendick, R. I., and Campbell, G. S., 1981, Theory and measurement of water potential, in: Water Potential Relations in Soil Microbiology (J. F. Parr, W. R. Gardner, and L. F. Elliott, eds.), pp. 1–22, Soil Science Society of America, Special Publication No. 9, Madison, Wisconsin.

    Google Scholar 

  • Pitt, J. I., 1975, Xerophilic fungi and the spoilage of foods of plant origin, in: Water Relations of Foods (R. B. Duckworth, ed.), pp. 273–307, Academic Press, London.

    Google Scholar 

  • Pitt, J. I., and Hocking, A. D., 1977, Influence of solute and hydrogen ion concentration on the water relations of some xerophilic fungi, J. Gen. Microbiol. 101:35–40

    Article  PubMed  CAS  Google Scholar 

  • Richter, H., 1976, The water status in the plant—experimental evidence, in: Water and Plant Life (O. L. Lange, L. Kappen and E. D. Schulze, eds.), pp. 42–58, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Robinson, R. A., and Sinclair, D. A., 1934, The activity coefficients of the alkali chlorides and of lithium iodide in aqueous solution from vapour pressure measurements, J. Am. Chem. Soc. 56:1830–1835.

    Article  CAS  Google Scholar 

  • Robinson, R. A., and Stokes, R. H., 1968, Electrolyte Solutions (2nd ed.), Academic Press, New York.

    Google Scholar 

  • Rose, C. W., 1966, Agricultural Physics, Pergamon Press, Oxford.

    Google Scholar 

  • Schneider, M. J., and Schneider, A. S., 1972, Water in biological membranes: Adsorption isotherms and circular dichroism as a function of hydration, J. Membr. Biol. 9:127–140.

    Article  PubMed  CAS  Google Scholar 

  • Schobert, B., 1977, Is there an osmotic regulatory mechanism in algae and higher plants? J. Theor. Biol. 68:17–26.

    Article  PubMed  CAS  Google Scholar 

  • Schobert, B., and Tschesche, H., 1978, Unusual solution properties of proline and its interaction with proteins, Biochim. Biophys. Acta 541:270–277.

    Article  PubMed  CAS  Google Scholar 

  • Schoeneweiss, D. F., 1978, Water stress as a predisposing factor in plant disease, in: Water and Plant Disease (T. T. Kozlowski, ed.), Water Deficits and Plant Growth, Vol. 5, pp. 61–99, Academic Press, New York.

    Google Scholar 

  • Scott, W. J., 1957, Water relations of food spoilage microorganisms,Adv. Food Res. 7:83–127.

    Article  CAS  Google Scholar 

  • Shepherd, W., 1973, A simple thermocouple psychrometer for determining tissue water potential and some observed leaf-maturity effects, J. Exp. Bot. 24:1003–1013.

    Article  Google Scholar 

  • Shepherd, W., 1975, Matric water potential of leaf tissue—measurement and significance, J. Exp. Bot. 26:465–468.

    Article  Google Scholar 

  • Shilo, M., 1979 (ed.), Strategies of Microbial Life in Extreme Environments, Verlag Chemie, Weinheim.

    Google Scholar 

  • Slatyer, R. O., 1967, Plant-Water Relationships, Academic Press, London.

    Google Scholar 

  • Spanner, D. C., 1964, Introduction to Thermodynamics, Academic Press, London.

    Google Scholar 

  • Spanner, D. C., 1972, Plants, water, and some other topics, in: Psychrometry in Water Relations Research (R. W. Brown and B. P. van Haveren, eds.), pp. 29–39, Utah Agricultural Experiment Station, Logan, Utah.

    Google Scholar 

  • Todd, G. W., 1972, Water deficits and enzymatic activity, in:Plant Responses and Control of Water Balance (T. T. Kozlowski, ed.), Water Deficits and Plant Growth, Vol. 3, pp. 177–216, Academic Press, New York.

    Google Scholar 

  • Tresner, H. D., and Hayes, J. A., 1971, Sodium chloride tolerance of terrestrial fungi, Appl. Microbiol. 22:210–213.

    PubMed  CAS  Google Scholar 

  • Trevithick, J. R., and Metzenberg, R. L., 1966, Genetic alteration of pore size and other properties of the Neurospora cell wall, J. Bacteriol. 92:1016–1020.

    PubMed  CAS  Google Scholar 

  • Troller, J. A., 1977, Statistical analysis of aw measurements obtained with a Sina scope, J. Food Sci. 42:86–90.

    Article  CAS  Google Scholar 

  • Unemoto, T., and Hayashi, M., 1979, Regulation of internal solute concentrations of marine Vibrio alginolyticus in response to external NaCl concentrations, Can. J. Microbiol. 25:922–926.

    Article  PubMed  CAS  Google Scholar 

  • Warren Wilson, J., 1967, The components of leaf water potential, I. Osmotic and matric potentials, Aust. J. Biol. Sci. 20:329–347.

    Google Scholar 

  • Wearing, A. H., and Burgess, L. W., 1979, Water potential and the saprophytic growth of Fusarium roseum “Graminearum,” Soil Biol. Biochem. 11:661–667.

    Article  Google Scholar 

  • Wilson, J. M., and Griffin, D. M., 1975, Respiration and radial growth of soil fungi at two osmotic potentials, Soil Biol. Biochem. 7:269–274.

    Article  Google Scholar 

  • Wilson, J. M., and Griffin, D. M., 1979, The effect of water potential on the growth of some soil basidiomycetes, Soil Biol. Biochem. 11:211–212.

    Article  Google Scholar 

  • Wong, P. T. W., and Griffin, D. M., 1974, Effect of osmotic potentials on streptomycete growth, antibiotic production and antagonism to fungi, Soil Biol. Biochem. 6:319–325.

    Article  Google Scholar 

  • Wong, P. T. W., and Griffin, D. M., 1976a, Bacterial movement at high matric potentials, I. In artificial and natural soils, Soil Biol. Biochem. 8:215–218.

    Google Scholar 

  • Wong, P. T. W., and Griffin, D. M., 1976b, Bacterial movement at high matric potentials, II. In fungal colonies, Soil Biol. Biochem. 8:219–223.

    Google Scholar 

  • Young, B. R., Newhook, F. J., and Allen, R. N., 1979, Motility and chemotactic response of Phytophthora cinnamomi zoospores in an “ideal soil,” Trans. Br. Mycol. Soc. 72:395–401.

    Article  Google Scholar 

  • Zimmermann, U., 1978, Physics of turgor- and osmoregulation, Annu. Rev. Plant Physiol. 29:121–148.

    Article  CAS  Google Scholar 

  • Zimmermann, U., and Steudle, E., 1978, Physical aspects of water relations of plant cells, Adv. Bot. Res. 6:45–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Griffin, D.M. (1981). Water and Microbial Stress. In: Alexander, M. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8306-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8306-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8308-0

  • Online ISBN: 978-1-4615-8306-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics