Advertisement

Heat Flow Limitations in Rapid Solidification Processing

  • R. Mehrabian
  • S. C. Hsu
  • C. G. Levi
  • S. Kou
Chapter
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 25)

Abstract

The term Rapid Solidification Processing, RSP, is equally applicable to the formation of both crystalline and non-crystalline solid phases by quenching of a material from an initial liquid state. During RSP cooling rate in the liquid prior to solidification affects nucleation (undercooling) and growth phenomena in important ways — it influences undercooling in crystalline solidification and is an overriding factor in the formation of non-crystalline structures. On the other hand, the fineness of a crystalline microstructure (e.g. segregate spacing, size of second phase particles, etc.) can usually be correlated to average cooling rate during solidification or time available for coarsening. Thus, a clear distinction must be made between cooling rates in the liquid (or during noncrystalline solidification) and during crystalline solidification; the latter is significantly lower at equivalent rates of external heat extraction due to the heat of fusion.

Keywords

Heat Transfer Coefficient Heat Flow Biot Number Interface Velocity Rapid Solidification Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. G. Levi, R. Mehrabian, submitted for publication to Met. Trans.Google Scholar
  2. 2.
    R. Mehrabian; Proceedings of Conference on Rapid Solidification Processing, Principles and Technologies, Nov. 1977, Reston, Virginia, p. 7. R. Mehrabian, B. H. Kear and M. Cohen, Eds., Claitor Publishing Division, 1978.Google Scholar
  3. 3.
    P. Predecki, A. W. Mellendore and N. J. Grant, Trans. Met. Soc. AIME, 1969, Vol. 233, p. 1581.Google Scholar
  4. 4.
    D. R. Harbur, J. W. Anderson and W. J. Maraman, Trans. Met. Soc. AIME, 1969, Vol; 245, p. 1055.Google Scholar
  5. 5.
    S. D. E. Ramati, G. J. Abbaschian, D. G. Backman and R. Mehrabian, Met. Trans. B, 1978, Vol. 9B, p. 279.CrossRefGoogle Scholar
  6. 6.
    S. Hong, D. G. Backman and R. Mehrabian, submitted for publication to Met. Trans.Google Scholar
  7. 7.
    R. C. Ruhl, Mater. Sci. Eng., 1967, Vol. 1, p. 313.CrossRefGoogle Scholar
  8. 8.
    P. H. Shingu and R. Ozaki, Met. Trans. A, 1975, Vol. 6A, p. 33.CrossRefGoogle Scholar
  9. 9.
    D. R. Uhlmann, J. Non-Cryst. Solids, 1976, Vol. 7, p. 337;CrossRefGoogle Scholar
  10. 10.
    F. Spaepen and D. Turnbull; Proceedings of Second International Conference on Rapidly Quenched Metals. Edited by N. J. Grant and B. L. Giessen, 1975, M.I.T. Press, Cambridge, Mass., p. 205.Google Scholar
  11. 11.
    S. C. Hsu, S. Chakravorty and R. Mehrabian, Met. Trans. B, 1978, Vol. 9B, p. 221.CrossRefGoogle Scholar
  12. 12.
    S. C. Hsu, S. Kou and R. Mehrabian, submitted for publication to Met. Trans.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. Mehrabian
    • 1
  • S. C. Hsu
    • 1
  • C. G. Levi
    • 1
  • S. Kou
    • 1
  1. 1.Department of Metallurgy and Mining Engineering, Department of Mechanical and Industrial EngineeringUniversity of IllinoisUrbana-ChampaignUSA

Personalised recommendations