Skip to main content

Organic Reactions in Molten Tetrachloroaluminate Solvents

  • Chapter

Abstract

The use of molten salts as a medium for organic reactions has been known since organic chemistry’s beginning. The advantages such as short reaction times, ease of product recovery, possibility of high yields, and savings on solvent recovery together with the unusual physical properties (ionic liquids, high conductivity) shown by molten salts in comparison with other solvents opens new frontiers in the study of organic syntheses, separations, and mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Sundermeyer, Angew. Chem. Intern. Ed. Engl. 4: 222 (1965).

    Article  Google Scholar 

  2. J. E. Gordon, Tech. Methods Org. Organometal. Chem. 1: 51 (1969).

    CAS  Google Scholar 

  3. C. R. Boston, in: Advances in Molten Salt Chemistry (J. Braunstein, Gleb Mamantov, and G. P. Smith, eds.), Vol. 1, pp. 126–163, Plenum Press, New York (1971).

    Google Scholar 

  4. A. M. Komagorov, I. K. Baeva, and V. A. Koptyug, Izv. Sibirsk. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1966: 147.

    Google Scholar 

  5. D. B. Bruce, A. J. S. Sorrie, and R. H. Thomson, J. Chem. Soc. 1953: 2403.

    Google Scholar 

  6. C. Seer, Monatsh 32: 143 (1911).

    Article  CAS  Google Scholar 

  7. J. M. Birchall, M. T. Clark, and D. H. Thorpe, J. Chem. Soc. Perkin I 1973: 442.

    Google Scholar 

  8. G. Baddeley and R. Williamson, J. Chem. Soc. 1956: 4647.

    Google Scholar 

  9. N. F. Hayes and R. H. Thomson, J. Chem. Soc. 1956: 1585.

    Google Scholar 

  10. H. Waldmann, J. Prakt. Chem. 150: 99 (1938).

    Article  CAS  Google Scholar 

  11. H. Raudnitz and G. Laube, Ber. 62: 509 (1929).

    Google Scholar 

  12. P. Kränzlein, Chem. Ber. 71: 2328 (1938).

    Google Scholar 

  13. M. P. Satchell and B. E. Stacey, J. Chem. Soc. (C) 1971: 469.

    Google Scholar 

  14. H. Waldman and H. Mathiowetz, Chem. Ber. 64: 1713 (1931).

    Google Scholar 

  15. A. Rieche, H. Sauthoff, and O. Miller, Chem. Ber. 65: 1371 (1932).

    Google Scholar 

  16. L. F. Fieser, J. Am. Chem. Soc. 53: 3546 (1931).

    Article  CAS  Google Scholar 

  17. S. Sethna, in: Friedel-Crafts and Related Reactions (G. A. Olah, ed.), Vol. 3, Part 2, p. 975, Interscience Publishers, New York (1964).

    Google Scholar 

  18. German Pat. 660, 220; Chem. Abstr. 32: 6257 (1938).

    Google Scholar 

  19. T. Tsunoda, Chiba Daigaku Kogakubu Kenkyu Hokoku 7: 19 (1959);

    Google Scholar 

  20. T. Tsunoda, Chem. Abstr. 54: 9861 (1960).

    Google Scholar 

  21. R. Scholl and W. Neovius, Chem. Ber. 44: 1075 (1911).

    Article  CAS  Google Scholar 

  22. F. G. Baddar, J. Chem. Soc. 1941: 310.

    Google Scholar 

  23. W. I. Awad, F. G. Baddar, M. A. Omara, and S. M. A. Omran, J. Chem. Soc. (C) 1971: 3721.

    Google Scholar 

  24. H. Waldmann and E. Ulsperger, Chem. Ber. 83: 188 (1950).

    Google Scholar 

  25. T. Kurado and M. Wada, Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 34: 1740 (1938);

    CAS  Google Scholar 

  26. T. Kurado and M. Wada, Chem. Abstr. 33: 2511 (1939).

    Google Scholar 

  27. H. Brockmann and K. Muller, Ann. Chem. 540: 51 (1939).

    CAS  Google Scholar 

  28. N. F. Hayes and R. H. Thomson, J. Chem. Soc. 1956: 1585.

    Google Scholar 

  29. G. Baddeley, G. Holt, and S. M. Makar, J. Chem. Soc. 1952: 2415, 3289.

    Article  Google Scholar 

  30. W. Knapp, Monatsh. 67: 332 (1936).

    Article  CAS  Google Scholar 

  31. G. Baddeley, S. M. Makar, and M. G. Ivenson, J. Chem. Soc. 1953: 3969.

    Google Scholar 

  32. G. Baddeley, G. Holt, S. M. Makar, and M. G. Ivinson, J. Chem. Soc. 1952: 3605.

    Google Scholar 

  33. W. Sundermeyer and O. Glemser, Angew. Chem. 70: 629 (1958).

    Google Scholar 

  34. R. Scholl, C. Seer, and R. Witzenbock, Chem. Ber. 43: 2202 (1910).

    Article  CAS  Google Scholar 

  35. French Pat. 795,447; Chem. Abstr. 30: 5595 (1936).

    Google Scholar 

  36. H. Reinlinger and A. Overstraeter, Chem. Ber. 91: 2121 (1958).

    Article  Google Scholar 

  37. R. Weitzenbock and C. Seer, Chem. Ber. 46: 1994 (1913).

    Article  CAS  Google Scholar 

  38. A. T. Balaban and C. D. Nenitzescu, in: Friedel-Crafts and Related Reactions (G. A. Olah, ed.), Vol. 2, Part 2, pp. 979–1047, Interscience Publishers, New York (1964).

    Google Scholar 

  39. R. Scholl and C. Seer, Monatsh 33: 1 (1912).

    Article  CAS  Google Scholar 

  40. L. F. Fieser and E. L. Martin, J. Am. Chem. Soc. 58: 1443 (1936).

    Article  CAS  Google Scholar 

  41. F. Mayer, E. Flechtenstein, and H. Gunther, Chem. Ber. 63: 1464 (1930).

    Google Scholar 

  42. R. Scholl and C. Seer, Chem. Ber. 55: 109 (1922).

    Google Scholar 

  43. U.S. Pat. 1,892,241; Chem. Abstr. 27: 1895(1933).

    Google Scholar 

  44. British Pat. 305,593; Brit. Chem. Abstr. B 1930: 603.

    Google Scholar 

  45. A. Zinke and K. Funke, Chem. Ber. 58: 2222 (1925).

    Google Scholar 

  46. R. Scholl, K. Meyer, and J. Donat, Chem. Ber. 70: 2180 (1937).

    Google Scholar 

  47. R. Scholl and C. Seer, Ann. Chem. 394: 111 (1921).

    Google Scholar 

  48. R. Scholl and G. Schwarzer, Chem. Ber. 55: 324 (1922).

    Google Scholar 

  49. A. K. Wick, Helv. Chim. Acta 54: 769 (1971).

    Article  CAS  Google Scholar 

  50. J. Arient and V. Slavik, Collection Czech. Chem. Commun. 34: 3579 (1969).

    Google Scholar 

  51. H. Waldmann and K. G. Hendenburg, J. Prakt. Chem. 156: 157 (1940).

    Article  CAS  Google Scholar 

  52. E. Clar and D. G. Stewart, J. Chem. Soc. 1951: 687.

    Google Scholar 

  53. J. W. Cook and C. G. M. deWorms, J. Chem. Soc. 1939: 268.

    Google Scholar 

  54. G. Baddeley, J. Chem. Soc. 1950: 994.

    Google Scholar 

  55. U.S. Pat. 2,258,394; Chem. Abstr. 36: 492 (1942).

    Google Scholar 

  56. J. J. Rooney and R. C. Pink, Proc. Chem. Soc. 1961: 142.

    Google Scholar 

  57. G. A. Clowes, J. Chem. Soc. 1968: 2519.

    Google Scholar 

  58. K. Fries and G. Finck, Chem. Ber. 41: 4271 (1908);

    Article  CAS  Google Scholar 

  59. K. Fries and W. Pfaffendorf, Chem. Ber. 43: 212 (1910).

    Article  CAS  Google Scholar 

  60. A. Gerecs, in Friedel-Crafts and Related Reaction (G. A. Olah, ed.), Vol. 3, Part 1, pp. 499–533, Interscience Publishers, New York (1964).

    Google Scholar 

  61. A. Gerecs and M. Windholz, Acta Chim. Acad. Sci. Hung. 8: 295 (1955).

    CAS  Google Scholar 

  62. G. C. Amin and N. M. Shah, J. Univ. Bombay 17A: 5 (1948).

    CAS  Google Scholar 

  63. R. Baltzly, W. S. Ide, and A. P. Phillips, J. Am. Chem. Soc. 77: 2522 (1955).

    Article  CAS  Google Scholar 

  64. A. F. Marey, F. G. Badder, and W. I. Awad, Nature 172: 1186 (1953).

    Article  CAS  Google Scholar 

  65. A. W. Ralston, E. W. Segebrecht, and M. R. McCorkle, J. Org. Chem. 7: 522 (1942).

    Article  CAS  Google Scholar 

  66. R. D. Desai and C. K. Mavani, Proc. Indian Acad. Sci. 29A: 269 (1949).

    CAS  Google Scholar 

  67. F. D. Thomas II, M. Shamma, and W. C. Fernelius, J. Am. Chem. Soc. 80: 5864 (1958).

    Article  CAS  Google Scholar 

  68. D. Chakravarti, A. Chakravarti, and A. Sarkar, J. Indian Chem. Soc. 48: 1017 (1971).

    CAS  Google Scholar 

  69. E. Ziegler and H. Junck, Monatsh. 86: 29 (1955);

    Article  CAS  Google Scholar 

  70. E. Ziegler and H. Junck, Monatsh. 87: 503 (1956);

    Article  CAS  Google Scholar 

  71. E. Ziegler and H. Maier, Monatsh. 89: 143 (1958);

    Article  CAS  Google Scholar 

  72. E. Ziegler and H. Maier, Monatsh. 89: 551 (1958);

    Article  CAS  Google Scholar 

  73. E. Ziegler and E. Nolken, Monatsh. 89: 737 (1958);

    Article  CAS  Google Scholar 

  74. E. Ziegler and K. Gelfert, Monatsh. 90: 858 (1959).

    Article  CAS  Google Scholar 

  75. A. A. Aleykutty and V. J. Baliah, J. Indian Chem. Soc. 31: 513 (1954).

    CAS  Google Scholar 

  76. F. R. Jensen and G. Goldman, in: Friedel-Crafts and Related Reactions (G. A. Olah, ed.), Vol. 3, Part 2, pp. 1319–1338, Interscience Publishers, New York (1964).

    Google Scholar 

  77. S. G. P. Plant and S. B. C. Williams, J. Chem. Soc. 1934: 1142.

    Google Scholar 

  78. K. v. Auwers and E. Risse, Chem. Ber. 64: 2216 (1931);

    Google Scholar 

  79. K. v. Auwers and E. Janssen, Ann. Chem. 483: 44 (1930).

    Google Scholar 

  80. G. Baddeley, J. Chem. Soc. 1943: 273.

    Google Scholar 

  81. G. Baddeley, J. Chem. Soc. 1943: 527.

    Google Scholar 

  82. G. Baddeley, J. Chem. Soc. 1944: 232.

    Google Scholar 

  83. G. Baddeley, G. Holt, and W. Pickles, J. Chem. Soc. 1952: 4162.

    Google Scholar 

  84. G. Baddeley and A. G. Pendleton, J. Chem. Soc. 1952: 807.

    Google Scholar 

  85. R. H. Schlosberg and R. P. Woodbury, J. Org. Chem. 37: 2627 (1972).

    Article  CAS  Google Scholar 

  86. D. A. McCaulay, in: Friedel-Crafts and Related Reactions (G. A. Olah, ed.), Vol. 2, Part 2, pp. 1049–1073, Interscience Publishers, New York (1964).

    Google Scholar 

  87. G. Holt and B. Pagdin, J. Chem. Soc. 1961: 4514.

    Google Scholar 

  88. J. D. Loudon and R. K. Razdan, J. Chem. Soc. 1954: 4299.

    Google Scholar 

  89. J. W. Cook, J. D. Loudon, and P. McCloskey, J. Chem. Soc. 1952: 3904.

    Google Scholar 

  90. British Pat. 305,393; Brit. Chem. Abstr. B 1930: 603.

    Google Scholar 

  91. V. Krepelka and R. Stefee, Collection Czech. Chem. Commun. 34: 3576 (1969).

    Google Scholar 

  92. U.S. Pat. 2,342,073; Chem. Abstr. 38: 4617(1944).

    Google Scholar 

  93. U.S. Pat. 2,439,301; Chem. Abstr. 42: 4340(1948).

    Google Scholar 

  94. J. F. Norris and J. Klemka, J. Am. Chem. Soc. 62: 1432 (1940).

    Article  CAS  Google Scholar 

  95. W. Sundermeyer and O. Glemser, Angew. Chem. 70: 628 (1958).

    Article  CAS  Google Scholar 

  96. W. Sundermeyer, Lecture, IUPAC Congress, London, September (1963).

    Google Scholar 

  97. W. Sundermeyer and W. Verbeek, Angew. Chem. Intern. Ed. Engl. 5: 1 (1966).

    Article  CAS  Google Scholar 

  98. G. V. D. Tiers, J. Am. Chem. Soc. 77: 4837 (1965).

    Article  Google Scholar 

  99. L. S. Kobrina, C. G. Furin, and G. G. Yakobson, Izv. Sibirsk Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 1968: 98.

    Google Scholar 

  100. N. C. Dokunikhri and M. M. Sergeeva, Dokl. Akad. Nauk SSSR 88: 987 (1953).

    Google Scholar 

  101. O. Glemsen and K. Cleine-Weischede, Ann. Chem. 659: 17 (1962).

    Google Scholar 

  102. U.S. Pat. 2,140,549; Chem. Abstr. 33: 2540(1939).

    Google Scholar 

  103. K. W. Fung and G. Mamantov, in: Advances in Molten Salt Chemistry (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Vol. 2, pp. 218–224, Plenum Press, New York (1973).

    Google Scholar 

  104. M. Fleischmann and D. Pletcher, J. Electroanal. Chem. 25: 449 (1970).

    Article  CAS  Google Scholar 

  105. N. E. Wisdom, Abstracts, 135th Meeting, The Electrochemical Society, Abstr. No. 138, New York, May (1969).

    Google Scholar 

  106. H. L. Jones, L. B. Boxall, and R. A. Osteryoung, J. Electroanal. Chem. 38: 476 (1972).

    Article  CAS  Google Scholar 

  107. K. W. Fung, J. Q. Chambers, and G. Mamantov, J. Electroanal. Chem. 47: 81 (1973).

    Article  CAS  Google Scholar 

  108. German Pat. 495, 332; Chem. Abstr. 24: 3248 (1930).

    Google Scholar 

  109. C. Seer, Monatsh. 33: 33 (1912).

    Article  CAS  Google Scholar 

  110. J. C. Lovie and R. H. Thomson, J. Chem. Soc. 1959: 4139.

    Google Scholar 

  111. H. Raudmitz and W. Bohm, J. Prakt. Chem. 123: 284 (1929).

    Article  Google Scholar 

  112. K. Zahn and P. Ochwat, Ann. Chem. 462: 72 (1928).

    CAS  Google Scholar 

  113. V. M. Chari, S. Needakanton, and T. R. Sashadri, Indian J. Chem. 4: 330 (1966).

    CAS  Google Scholar 

  114. H. Waldman and P. Sellner, J. Prakt. Chem. 150: 145 (1938).

    Article  Google Scholar 

  115. V. P. Aggarwala, R. Gopal, and S. P. Garg, J. Org. Chem. 37: 1247 (1972).

    Google Scholar 

  116. German Pat. 538, 457; Chem. Abstr. 26: 1619 (1932).

    Google Scholar 

  117. A. Eitel and R. Fialla, Monatsh. 79: 112 (1948).

    Article  CAS  Google Scholar 

  118. R. Scholl and W. Neuberger, Monatsh. 33: 507 (1902).

    Article  Google Scholar 

  119. W. Lageman, E. Lauria, and E. Fachinelli, Farmaco (Pavia) Ed. Sci. 11: 274 (1956);

    Google Scholar 

  120. W. Lageman, E. Lauria, and E. Fachinelli, Chem. Abstr. 50: 13940 (1956).

    Google Scholar 

  121. R. Scholl and C. Seer, Chem. Ber. 44: 1091 (1911).

    Article  CAS  Google Scholar 

  122. A. Zinke, H. Troger, and E. Ziegler, Chem. Ber. 73: 1042 (1940);

    Google Scholar 

  123. A. Zinke, G. Gorbach, and D. Schimka, Monatsh. 48: 593 (1927).

    Article  CAS  Google Scholar 

  124. R. Scholl, K. Meyer, and J. Dorat, Chem. Ber. 70: 2180 (1937).

    Google Scholar 

  125. R. Scholl and C. Seer, Chem. Ber. 44: 1233 (1911).

    Article  CAS  Google Scholar 

  126. F. Mayer and O. Stark, Chem. Ber. 64: 2003 (1931).

    Google Scholar 

  127. F. Mayer and H. Gunther, Chem. Ber. 63: 1455 (1930).

    Google Scholar 

  128. H. Waldmann, J. Prakt. Chem. 130: 92 (1931).

    Article  CAS  Google Scholar 

  129. H. Waldmann, J. Prakt. Chem. 147: 331 (1937).

    Article  CAS  Google Scholar 

  130. N. S. Dokunikhin, Z. Z. Moiseeva, and V. A. Mayatnikova, Zh. Organ. Khim. 2: 516 (1966).

    CAS  Google Scholar 

  131. F. Mayer, O. Stark, and K. Schon, Chem. Ber. 65: 1333 (1932).

    Google Scholar 

  132. German Pat. 692, 708; Chem. Abstr. 35: 4605(1938).

    Google Scholar 

  133. H. Waldmann, J. Prakt. Chem. 131: 71 (1931).

    Article  CAS  Google Scholar 

  134. H. Meyer and H. Raudnitz, Chem. Ber. 63: 2010 (1930).

    Google Scholar 

  135. F. Mayer and O. Hoffmann, Chem. Ber. 65: 1338 (1932).

    Google Scholar 

  136. H. Raudnitz and G. Laube, Chem. Ber. 62: 938 (1929).

    Google Scholar 

  137. F. Mayer, A. Mombour, W. Lassmann, W. Werner, P. Landmann, and E. Schneider. Ann. Chem. 488: 259 (1931).

    CAS  Google Scholar 

  138. A. K. McBeth, J. R. Price, and F. L. Winzor, J. Chem. Soc. 1935: 325.

    Google Scholar 

  139. F. L. Winzor, J. Chem. Soc. 1935: 336.

    Google Scholar 

  140. H. Waldmann and H. Poppe, Ann. Chem. 527: 190 (1937).

    CAS  Google Scholar 

  141. H. Raudmitz, L. Redlich, and F. Fiedler, Chem. Ber. 64: 1835 (1931).

    Google Scholar 

  142. A. J. S. Sorrie and R. H. Thomson, J. Chem. Soc. 1955: 2233.

    Google Scholar 

  143. A. J. S. Sorrie and R. H. Thomson, J. Chem. Soc. 1955: 2244.

    Google Scholar 

  144. W. Steinkopf, T. Barlag, and H.-J. v. Petersdorff, Ann. Chem. 540: 17 (1939).

    Google Scholar 

  145. German Pat. 512, 229; Chem. Abstr. 25: 1100(1931).

    Google Scholar 

  146. G. Baddeley and R. Williamson, J. Chem. Soc. 1953: 2120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Jones, H.L., Osteryoung, R.A. (1975). Organic Reactions in Molten Tetrachloroaluminate Solvents. In: Braunstein, J., Mamantov, G., Smith, G.P. (eds) Advances in Molten Salt Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8270-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8270-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8272-4

  • Online ISBN: 978-1-4615-8270-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics