Skip to main content

Techniques for the Measurement of Electrode Processes at Temperatures Above 100°C

  • Chapter
Advances in Corrosion Science and Technology

Abstract

This paper is intended as an introductory guide to experimental techniques which have been found useful in electrochemical studies at temperatures high enough to pose problems of containment of the solution vapor pressure. There are compelling reasons, both fundamental and technological, for extending the temperature range over which meaningful electrochemical measurements can be made. On the one hand, many of the applications of electrochemistry in fields of technological interest are concerned with the properties of electrolyte solutions, and with the mechanism of electrode processes, at temperatures considerably higher than those at which electrochemical studies are usually carried out. The capital-intensive electrical power industries, both nuclear and conventional, and the chemical process industries provide frequent examples of problems where the basic electrochemical data available are inadequate for an understanding of the electrode-electrolyte interactions of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. Harped and B. B. Owen, The Physical Chemistry of Electrolyte Solutions, Reinhold, New York (1958).

    Google Scholar 

  2. D. A. Maclnnes, The Principles of Electrochemistry,Dover Publications Inc., New York (1961), pp. 144, 201.

    Google Scholar 

  3. L. Meites, Handbook of Analytical Chemistry,McGraw-Hill, New York (1963).

    Google Scholar 

  4. A. Brenner, Electrodeposition of Alloys: Principles and Practice, Vol. 1, Academic Press, New York (1963), p. 139.

    Google Scholar 

  5. J. E. B. Randles and K. S. Whiteley, Trans. Farad. Soc. 52, 1509 (1956).

    Google Scholar 

  6. D. G. Ives and G. J. Janz, Reference Electrodes, Academic Press, New York (1961).

    Google Scholar 

  7. M. H. Lietzke and R. W. Stoughton, J. Chem. Ed. 39, 230 (1962).

    Google Scholar 

  8. A. S. Quist and W. L. Marshall, J. Phys. Chem. 69 (9), 3165 (1965).

    Google Scholar 

  9. H. S. Harned and B. B. Owen, Ref. 1, p. 331.

    Google Scholar 

  10. T. H. Gronwell, V. K. La Mer, and K. Sandved, Z. Physik 29, 358 (1929).

    Google Scholar 

  11. D. Feakins and C. M. French, J. Chem. Soc. 2581 (June, 1957).

    Google Scholar 

  12. H. S. Hamed and B. B. Owen, Ref. 1, p. 338.

    Google Scholar 

  13. F. Franks and D. G. Ives, Quart. Revs. 20 (1), (1966).

    Google Scholar 

  14. R. S. Greeley, Dissertation for Degree of Ph. D., University of Tennessee (May, 1959).

    Google Scholar 

  15. S. Stene, Rec. Tray. Chim. Pays-Bas 49, 1133 (1930).

    Google Scholar 

  16. V. A. Titov and G. I. Agapov, Zavod. Lab. 26 (7), 839 (1960).

    Google Scholar 

  17. J. N. Wanklyn and C. F. Britton, J. Nuclear Mats. 5, 326 (1962);

    Google Scholar 

  18. J. N. Wanklyn and B. E. Hopkinson, J. Appl. Chem. 8, 496 (1958).

    Google Scholar 

  19. D. M. Newitt, The Design of High Pressure Plant and the Properties of Fluids at High Pressures, Oxford University Press, Oxford (1940).

    Google Scholar 

  20. P. W. Bridgman, The Physics of High Pressure,Bell & Sons (1949).

    Google Scholar 

  21. B. F. Dodge, High Pressure Technique, Perry’s Chemical Engineers’ Handbook, 3rd Ed., McGraw-Hill, New York (1950).

    Google Scholar 

  22. E. W. Comings, High Pressure Technology,McGraw-Hill, New York (1956).

    Google Scholar 

  23. S. D. Hamann, Physico-Chemical Effects of Pressure, Butterworths, London (1957).

    Google Scholar 

  24. K. E. Bett and D. M. Newitt, The Design of High Pressure Vessels, Chemical Engineering Practice, Vol. 5, Butterworths, London (1958).

    Google Scholar 

  25. H. Tongue, The Design and Construction of High Pressure Chemical Plant, 2nd Ed., Chapman & Hall, (1959).

    Google Scholar 

  26. C. G. Brownell and E. H. Young, Process Equipment Design-Vessel Design, John Wiley and Sons, New York (1959).

    Google Scholar 

  27. W. R. D. Manning, High Pressure Engineering, Bulleid Memorial Lectures,Vol. 11, University of Nottingham (1963).

    Google Scholar 

  28. J. F. Harvey, Pressure Vessel Design,Van Nostrand, New York (1963).

    Google Scholar 

  29. R. S. Bradley, High Pressure Physics and Chemistry,Vols. 1 and 2, Academic Press, New York (1963).

    Google Scholar 

  30. W. L. Williams, Corrosion 13, 539 (1957).

    Google Scholar 

  31. T. E. Evans, Australian Corrosion Engineering 25 (1960).

    Google Scholar 

  32. E. U. Franck, J. E. Savolainen, and W. L. Marshall, Rev. Sci. Instr. 33, 115 (1962).

    Google Scholar 

  33. J. K. Fogo, S. W. Benson, and C. S. Copeland, J. Chem. Phys. 22, 212 (1954).

    Google Scholar 

  34. A. A. Noyes, Publication 63, Carnegie Institute, Washington, U.S.A. (1907).

    Google Scholar 

  35. J. F. Corwin, R. G. Bayless, and G. E. Owen, J. Phys. Chem. 64, 641 (1960).

    Google Scholar 

  36. A. J. Ellis, J. Chem. Soc. 2299, 4300 (1963)

    Google Scholar 

  37. G. Whitehead, J. Appl. Chem. 11, 136 (1961).

    Google Scholar 

  38. J. B. Dobson, private communication (1964).

    Google Scholar 

  39. H. H. Reamer, G. N. Richter, and B. H. Sage, ASME Paper 63-WA-255, Philadelphia (1963).

    Google Scholar 

  40. M. A. Styrikovitch and K. Ya. Katkovskaya, Teploenergetika 2 (5) (1955).

    Google Scholar 

  41. G. C. Kennedy, J. Econ. Geology 45, 629 (1960).

    Google Scholar 

  42. K. Videm, 2nd Int. Conf. on the Peaceful Uses of Atomic Energy, Vol. 5, United Nations, Geneva (1958), p. 121.

    Google Scholar 

  43. J. T. Harrison, D. de G. Jones, and H. G. Masterson, A Simple Autoclave for Electrochemical Experiments (to be published).

    Google Scholar 

  44. M. W. Boothroyd and D. H. Lee, A.E.R.E. Document HL61/1232 (1961).

    Google Scholar 

  45. G. C. Booth, Symposium on High Temperature Aqueous Electrochemistry, National Chemical Laboratory/National Physical Laboratory (1964).

    Google Scholar 

  46. P. E. Crosse, private communication.

    Google Scholar 

  47. J. T. Harrison and D. de G. Jones, unpublished (1967).

    Google Scholar 

  48. W. C. Waggener and A. M. Tripp, Rev. Sci. Instr. 30, 677 (1959).

    Google Scholar 

  49. R. E. Moore and E. Rau, USAEC Report WAPD-BT-22 (1961), pp. 71–77.

    Google Scholar 

  50. F. H. Krenz, ASTM Special Technical Publication 368 (1963), p. 32.

    Google Scholar 

  51. M. A. Tolstaya, G. N. Gradusov, and S. V. Bogatyveva, Corrosion of Reactor Materials-A Collection of Articles, AEC Trans. 5219 (1962), p. 280.

    Google Scholar 

  52. M. H. Lietzke, R. S. Greeley, W. T. Smith, and R. W. Stoughton, J. Phys. Chem. 64, 652 (1960).

    Google Scholar 

  53. R. K. Laird, A. G. Morrell, and L. Seed, Disc. Faraday Soc. 22, 126 (1956).

    Google Scholar 

  54. J. E. Draley and W. E. Ruther, Corrosion 12, 481 (1956).

    Google Scholar 

  55. V. H. Troutner, Hanford Atomic Products Operation Report HW 64111, TID 4500, USAEC (1960).

    Google Scholar 

  56. A. L. Bacarella, J. Electrochem. Soc. 108, 331 (1961).

    Google Scholar 

  57. J. E. Draley, W. E. Ruther, and S. Greenberg, Corrosion 14, 191 (1958).

    Google Scholar 

  58. A. F. McMillan, Chemistry and Industry 1279 (1959).

    Google Scholar 

  59. R. E. Biggers and J. M. Chilton, Review and Bibliography on the Design and Use of Windows for Optical Measurements at Elevated Temperatures and Pressures 1881–1959, USAEC Oak Ridge National Laboratory Report 2738 (1959).

    Google Scholar 

  60. E. U. Franck, CERL Symposium on High Temperature Aqueous Electrochemistry (1963).

    Google Scholar 

  61. J. K. Fogo, C. S. Copeland, and S. W. Benson, Rev. Sci. Instr. 22, 765 (1951).

    Google Scholar 

  62. P. J. Ovenden, The Pressure and Temperature Coefficient of Electrolytic Conductance in Aqueous Solutions, Ph. D. Thesis, University of Southampton (1965).

    Google Scholar 

  63. G. J. Spaepen, M. J. Fevery, and J. Lincter, 9th Meeting of CITCE, Section 6, Brussels; Corrosion Science 7, 405 (1967).

    Google Scholar 

  64. V. P. Kondrat’ev and S. V. Gorbachev, Zh. Fiz. Khim. 35, 326 (1961).

    Google Scholar 

  65. D. A. Lown, A Study of Aqueous Solutions at High Temperatures, M. Sc. Thesis, University of Newcastle (1961).

    Google Scholar 

  66. D. A. Lown and W. F. Wynne-Jones, J. Sci. Instr. 44, 1037 (1967).

    Google Scholar 

  67. B. Vodar and P. Johannin, Ind. and Eng. Chem. 49, 2040 (1957).

    Google Scholar 

  68. R. N. Roychoudury and C. F. Bonilla, J. Electrochem. Soc. 103, 241 (1956).

    Google Scholar 

  69. H. D. Parbrook, J. Sci. Instr. 30, 26 (1953).

    Google Scholar 

  70. A. Brenner and S. Senderoff, J. Electrochem. Soc. 97, 361 (1950).

    Google Scholar 

  71. R. Walters and B. E. Eakin, Rev. Sci. Instr. 28, 204 (1957).

    Google Scholar 

  72. A. L. Bacarella and A. L. Sutton, J. Electrochem. Soc. 112, 546 (1965).

    Google Scholar 

  73. M. W. Connell, U.S. Patent 2,625,573 (1953).

    Google Scholar 

  74. A. Distèche, Rev. Sci. Instr. 30, 474 (1959).

    Google Scholar 

  75. I. Simon, Rev. Sci. Instr. 28, 963 (1957).

    Google Scholar 

  76. H. J. Welbergen, J. Sci. Instr. 10, 247 (1933).

    Google Scholar 

  77. G. M. J. Mackay, U.S. Patent 1,456,110 (1923).

    Google Scholar 

  78. A. Michels and C. Michels, Proc. Roy. Soc. A231, 409 (1953).

    Google Scholar 

  79. P. Johannin, J. Rech. Centre Nat. Rech. Sci. Lab. Bellevue (Paris) 26, 324 (1954).

    Google Scholar 

  80. O. Fuchs, Z. Electrochem 47, 101 (1941).

    Google Scholar 

  81. H. S. Harned and B. B. Owen, Ref. 1, p. 499.

    Google Scholar 

  82. H. S. Harned and B. B. Owen, Ref. 1, p. 574.

    Google Scholar 

  83. G. Tammann and E. Jenckel, Z. anorg in allgem Chem. 137, 337 (1928).

    Google Scholar 

  84. S. Schuldiner and T. B. Warner, J. Electrochem. Soc. 112 (8), 853 (1965).

    Google Scholar 

  85. M. Pourbaix, Bulletin Technique Association des Ingenieurs sortés de l’Université de Bruxelles (1946), p. 67.

    Google Scholar 

  86. M. Pourbaix, Bulletin Technique Association des Ingenieurs sortés de l’Université de Bruxelles (1947), p. 109.

    Google Scholar 

  87. R. G. Bates and V. E. Bower, J. of Res. of the National Bureau of Standards 53, 283 (1954).

    Google Scholar 

  88. J. Giner, J. Electrochem. Soc. 111 (3), 376 (1964).

    Google Scholar 

  89. M. Le Peintre, Soc. Franc. Elect. Bull 1, 584 (1960).

    Google Scholar 

  90. M. H. Lietzke, R. S. Greeley, W. T. Smith, and R. W. Stoughton, J. Phys. Chem. 64, 1445 (1960).

    Google Scholar 

  91. M. H. Lietzke, H. B. Hupf, and R. W. Stoughton, J. Phys. Chem. 69, 2395 (1965).

    Google Scholar 

  92. R. G. H. Watson, private communication.

    Google Scholar 

  93. J. B. Dobson, Studies on High Temperature Aqueous Reference Electrodes, to be published.

    Google Scholar 

  94. W. Vielstich, Zeit. Inst. (6), 154 (1959).

    Google Scholar 

  95. A. J. Ellis and G. J. Hills, Proc. S.A.C. Symposium, Nottingham, Heller & Sons, Cambridge (1965), pp. 430–445.

    Google Scholar 

  96. M. H. Lietzke and J. V. Vaughan, J. Amer. Chem. Soc. 77, 876 (1954).

    Google Scholar 

  97. R. G. Bates, in Reference Electrodes, D. J. G. Ives and G. J. Janz, (1961).

    Google Scholar 

  98. O. V. Ingruber, Pulp and Paper Magazine, Canada 55, 124 (1954).

    Google Scholar 

  99. H. K. Fricke, in Beiträge zur angewandten Glasforschung, E. Schott, ed., Wissenschaftlicher Verlag, Stuttgart (1959), p. 175.

    Google Scholar 

  100. R. Fournie, P. Le Clerc, and M. Saint-James, Silicates Industriels 27, 33 (1962).

    Google Scholar 

  101. R. J. Raridon, Measurement of Temperature Coefficients in Aqueous Systems up to 200°C using Packed Column Techniques, Ph. D. Thesis, Vanderbilt University, U.S.A. (1959).

    Google Scholar 

  102. M. H. Lietzke and R. W. Stoughton, J. Phys. Chem. 68, 3043 (1964).

    Google Scholar 

  103. V. Prazak, Werk. u. Korr. 524 (1958).

    Google Scholar 

  104. C. J. Booker, Symposium on High Temperature Aqueous Electrochemistry, National Chemical Laboratory/National Physical Laboratory (1964).

    Google Scholar 

  105. J. M. Kolotyrkin, N. J. Bune and G. M. Florianovitch, European Symposium on Corrosion Inhibitors, University of Ferrara (1960), p. 493.

    Google Scholar 

  106. J. M. Kolotyrkin, N. J. Bune, and G. M. Florianovitch, AEC Translation 5219 (1960), p. 26.

    Google Scholar 

  107. M. H. Lietzke and R. W. Stoughton, J. Phys. Chem. 70, 756 (1966)

    Google Scholar 

  108. H. S. Harned, A. S. Keston, and J. G. Donelson, J. Amer. Chem. Soc. 58, 989 (1936).

    Google Scholar 

  109. R. G. Bates, R. A. Robinson, and H. B. Hetzer, J. Phys. Chem. 66, 1423 (1962).

    Google Scholar 

  110. M. B. Towns, R. S. Greeley, M. H. Lietzke, and R. W. Stoughton, J. Phys. Chem. 64, 1861 (1960).

    Google Scholar 

  111. M. H. Lietzke and R. W. Stoughton, J. Phys. Chem. 67, 2573 (1963).

    Google Scholar 

  112. M. H. Lietzke and R. W. Stoughton, J. Amer. Chem. Soc. 75, 5226 (1953):

    Google Scholar 

  113. O. V. Ingruber, Industrial Chemist 32, 513 (1956).

    Google Scholar 

  114. J. F. Leonard, ASTM Special Publication 190 (1966), p. 16.

    Google Scholar 

  115. K. Van Ipenburg, 3rd European Congress on Corrosion, Brussels, Electrotechniek 41, 445 (1963).

    Google Scholar 

  116. W. N. Greer, Trans. Electrochem. Soc. 72, 153 (1937).

    Google Scholar 

  117. C. M. Myers and C. F. Bonilla, unpublished.

    Google Scholar 

  118. J. E. Draley and W. E. Ruther, Conference on Corrosion of Aluminium in High Temperature, Chalk River, Ontario, Canada (1956).

    Google Scholar 

  119. R. L. Every and W. P. Banks, Electrochemical Technology 4, 275.

    Google Scholar 

  120. R. L. Every and W. P. Banks, Corrosion 153 (1967).

    Google Scholar 

  121. M. Le Peintre, CR Acad. Sci. 261, 3389 (1965).

    Google Scholar 

  122. G. Körtum and W. Hausserman, Ber. Bunsenges. Physikchem. 69 (7), 594 (1965).

    Google Scholar 

  123. V. V. Gerasimov, Corrosion of Reactor Materials, a Collection of Articles, AEC Transl. 5219 (1962), p. 13.

    Google Scholar 

  124. V. V. Gerasimov and P. A. Akol’zin, Method of Investigating Corrosion and Electrochemical Processes at High Temperatures and Pressures, Moscow State Publishing House (1963), Chapt. 2.

    Google Scholar 

  125. V. V. Gerasimov, A. I. Gromova, and A. A. Sabinin, Zavod Lab. 24, 1420 (1958).

    Google Scholar 

  126. L. Hammar, Progress Report S332, Aktiebolaget Atomenergi, Stockholm, Sweden (1965).

    Google Scholar 

  127. B. E. Wilde, Corrosion, to be published (1968).

    Google Scholar 

  128. J. Postlethwaite, Electr. Acta 12, 333 (1967).

    Google Scholar 

  129. L. L. Shreir, Corrosion, Vol. 2, Sec. 19, Newnes (1963).

    Google Scholar 

  130. M. Bonnemay, 6th Meeting of CITCE, Poitiers, Butterworths, London (1955), p. 68.

    Google Scholar 

  131. A. J. de Bethune, T. S. Licht, and N. Swendeman, J. Electrochem. Soc. 106, 616 (1959).

    Google Scholar 

  132. T. Ikeda and H. Kimura, J. Phys. Chem. 69, 41 (1965).

    Google Scholar 

  133. B. D. Butler and J. C. R. Turner, J. Phys. Chem. 69, 3598 (1965).

    Google Scholar 

  134. J. N. Agar and W. G. Breck, Nature 175, 298 (1955).

    Google Scholar 

  135. J. N. Agar and W. G. Breck, Trans. Farad. Soc. 53, 167 (1957).

    Google Scholar 

  136. W. Hübner, Progress Report S335, Aktiebolaget Atomenergi, Stockholm, Sweden (1965).

    Google Scholar 

  137. J. H. Greenblatt and A. F. Macmillan, First International Congress on Metallic Corrosion (1961), p. 429.

    Google Scholar 

  138. J. H. Greenblatt and A. F. Macmillan, Corrosion 19, 146t (1963).

    Google Scholar 

  139. G. F. Savchenkov and L. A. Uvarov, Protection of Metals 1, 569 (1965).

    Google Scholar 

  140. J. C. Griers, Corrosion 24, 96 (1968).

    Google Scholar 

  141. J. N. Wanklyn and R. Aldred, J. Electrochem. Soc. 106, 529 (1959).

    Google Scholar 

  142. A. L. Bacarella and A. L. Sutton, Electrochemical Technology 4, 117 (1966).

    Google Scholar 

  143. J. T. Harrison and H. G. Masterson, 15th Meeting of CITCE, London (1964).

    Google Scholar 

  144. J. T. Harrison, D. de G. Jones, and H. G. Masterson, 16th Meeting of CITCE, Brussels (1965)

    Google Scholar 

  145. B. E. Wilde, Corrosion 23, 379 (1967).

    Google Scholar 

  146. B. E. Wilde, Corrosion 24, 338 (1968).

    Google Scholar 

  147. C. J. Mason and J. T. Harrison, CERL Laboratory Note No. RD/L/N71/66, Electrode Potential/pH Diagrams for the Iron-Water System at Elevated Temperatures (1966).

    Google Scholar 

  148. D. Lewis, pH-Potential Diagrams of the Iron-Water System up to 350°C, AB Atomenergie, Stockholm, Sweden (1966).

    Google Scholar 

  149. M. H. Lietzke and J. V. Vaughan, J. Amer. Chem. Soc. 79, 4266 (1957).

    Google Scholar 

  150. M. H. Lietzke and R. W. Stoughton, in Encyclopaedia of Electrochemistry, C. A. Hampel, ed., Reinhold, New York (1964), pp. 505–511.

    Google Scholar 

  151. P. A. Kryuchov, V. D. Perkave, L. I. Stavortina, and B. S. Smolyakov, Izvestia Akad. Nauk SSR Ser. Khim. Nauk No. 7 (2) (1966), p. 29.

    Google Scholar 

  152. W. von Holzapfel and E. U. Franck, Berichte der Bunsengesellschaft 70, 1105 (1966).

    Google Scholar 

  153. A. J. Ellis and W. S. Fyfe, Reviews of Pure and Applied Chemistry (Australia), 7, 261 (1957).

    Google Scholar 

  154. G. J. Hills and P. J. Ovenden, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 4, Electrochemistry at High Pressures, P. Delahay, ed. (1966), p. 185.

    Google Scholar 

  155. S. D. Hamann, Annual Review of Physical Chemistry (1964).

    Google Scholar 

  156. S. D. Hamann and M. Linton, Trans. Farad. Soc. 62, 2234 (1966).

    Google Scholar 

  157. D. Pearson, C. S. Copeland, S. W. Benson, J. Amer. Chem. Soc. 85, 1044 (1963).

    Google Scholar 

  158. J. F. Corwin, R. G. Bayless, G. E. Owen, J. Chem. Soc. 64, 641 (1960).

    Google Scholar 

  159. A. S. Quist, E. U. Franck, H. R. Jolley, and W. L. Marshall, J. Phys. Chem. 67, 2453 (1963).

    Google Scholar 

  160. A. S. Quist, W. L. Marshall, and H. R. Jolley, J. Phys. Chem. 69, 2726 (1965).

    Google Scholar 

  161. A. S. Quist and W. L. Marshall, J. Phys. Chem. 72 (9), 3122 (1968).

    Google Scholar 

  162. I. N. Maksimova and V. F Yushkevich, Zh. Fiz. Khim. 37, 903 (1963).

    Google Scholar 

  163. J. M. Wright, T. W. Lindsay Jr., and T. R. Druga, WAPD-TM-204, USAEC (1961).

    Google Scholar 

  164. B. E. Wilde, Electr. Acta 12, 737 (1967).

    Google Scholar 

  165. A. D. Brewer and J. E. C. Hutchins, Nature 210, 1257 (1966).

    Google Scholar 

  166. G. J. Bignold, A. D. Brewer, and B. Hearn, unpublished (1968).

    Google Scholar 

  167. H. S. Harped and R. A. Robinson, Trans. Farad. Soc. 36, 973 (1940).

    Google Scholar 

  168. G. Briere, Electr. Acta 13, 119 (1968).

    Google Scholar 

  169. A. T. Vagramyan, L. A. Uvarov, M. A. Zhamagortsyan, Soviet Electrochemistry, 1 (1), 14 (1965).

    Google Scholar 

  170. A. T. Vagramyan, L. A. Uvarov, M. A. Zhamagortsyan, Élektrokhimiya 1 (6), 558 (1965).

    Google Scholar 

  171. A. T. Vagramyan, L. A. Uvarov, M. A. Zhamagortsyan, and Yu. M. Polukarov, Élektrokhimiya 3 (4), 363 (1967).

    Google Scholar 

  172. A. T. Vagramyan and L. A. Uvarov, Trans. Inst. Metal Finishing 39 (2), 56 (1962).

    Google Scholar 

  173. A. T. Vagramyan, L. A. Uvarov, and M. A. Zhamagortsyan, Izv. Akad. Nauk SSSR Otd. Khim. Nauk (2), 301 (1964).

    Google Scholar 

  174. W. T. Grubb and C. J. Michalske, Nature 201, 287 (1964).

    Google Scholar 

  175. H. G. Oswin and S. M. Chodosh, in Advances in Chemistry, Vol. 61, Fuel Cell Systems, G. J. Young and H. R. Linden, eds., Amer. Chem. Soc., Washington, D.C. (1965).

    Google Scholar 

  176. R. Thacker, Nature 206, 186 (1965)

    Google Scholar 

  177. E. J. Cairns and D. I. Macdonald, Electrochemical Technology 2, 65 (1964).

    Google Scholar 

  178. F. T. Bacon, A. M. Adams, and R. G. H. Watson, in Fuel Cells, Mitchell, Academic Press, New York (1963), p. 129.

    Google Scholar 

  179. R. G. H. Watson and L. J. Pearce, Proc. 4th Int. Symp. on ‘Batteries’, Vol. 2, Pergamon Press, London (1965), p. 349.

    Google Scholar 

  180. A. J. Hartner, M. A. Vertes, V. E. Medina, and H. G. Oswin, Ref. 174, p. 141.

    Google Scholar 

  181. C. E. Heath and C. H. Warsham, Fuel Cells, Vol. 2, G. J. Young, ed., Chapman and Hall, London (1963), p. 182.

    Google Scholar 

  182. R. Thacker and D. D. Bump, Electrochem. Technology 3, 9 (1965).

    Google Scholar 

  183. Yu. I. Goloukin, N. P. Vasilistov, and N. A. Fedotav, Élektrokhimiya 3 <7), 712 (1967).

    Google Scholar 

  184. M. H. Lietzke, J. Amer. Chem. Soc. 77, 1344 (1955).

    Google Scholar 

  185. R. S. Greeley, Anal. Chem. 32, 1717 (1960).

    Google Scholar 

  186. W. H. Marburger, J. Anderson, and G. G. Wigle, Argonne National Laboratory USA Report ANL5298 (1954).

    Google Scholar 

  187. A. Distèche, J. Electrochem. Soc. 109, 1084 (1962).

    Google Scholar 

  188. S. D. Hamann, J. Phys. Chem. 67, 2233 (1963).

    Google Scholar 

  189. A. Distèche and S. Distèche, J. Electrochem. Soc. 112, 350 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

de Jones, D.G., Masterson, H.G. (1970). Techniques for the Measurement of Electrode Processes at Temperatures Above 100°C. In: Fontana, M.G., Staehle, R.W. (eds) Advances in Corrosion Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8252-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8252-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8254-0

  • Online ISBN: 978-1-4615-8252-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics