Advertisement

Cellular Pharmacology of Ganglionic Transmission

  • Syogoro Nishi

Abstract

Sympathetic and parasympathetic ganglia are made up of neurons which lie outside the central nervous system. They appear either as a macroscopic fusiform lump with clearly recognizable pre- and postganglionic branches or as a microscopic meshwork with indistinct input–output relationships. In contrast to central neurons which are protected in important biochemical respects and maintained in a complete homeostasis by the blood–brain barrier, the neurons in autonomic ganglia are exposed to the common interstitial fluid through a loose layer of satellite cells (gliocytes). Thus the ganglion neurons will be affected much more readily by the drugs applied either systemically or locally.

Keywords

Ganglion Cell Sympathetic Ganglion Superior Cervical Ganglion Presynaptic Nerve Terminal Cellular Pharmacology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambache, N., 1949, The nicotinic action of substances supposed to be purely smooth muscle stimulating. (B) Effect of BaCl2 and pilocarpine on the superior cervical ganglion, J. Physiol. (London) 110:164.Google Scholar
  2. Ambache, N., Perry, W. L. M., and Robertson, P. A., 1956, The effect of muscarine on perfused superior cervical ganglia of cats, Br. J. Pharmacol. 11:442.Google Scholar
  3. Alkadhi, K. A., and McIsaac, R. J., 1971, Non-nicotinic ganglionic transmission during partial ganglionic blockade with chlorisondamine, Fed. Proc. 30:655.Google Scholar
  4. Araki, T., and Otani, T., 1955, Response of single motoneurons to direct stimulation in toad’s spinal cord, J. Neurophysiol. 18:472.PubMedGoogle Scholar
  5. Atuk, N. O., Blaydes, M. C., Westervelt, F. B., Jr., and Wood, J. E., Jr., 1967, Effect of aminoph-ylline on. urinary excretion of epinephrine and norepinephrine in man, Circulation 35:745.PubMedGoogle Scholar
  6. Baker, P. F., Hodgkin, A. L., and Ridgeway, E. B., 1971, Depolarization and calcium entry in squid giant axons, J. Physiol (London) 218:709.Google Scholar
  7. Bianchi, C. P., 1961, Effects of caffeine on radiocalcium movement in frog sartorius, J. Gen. Physiol. 44:845.PubMedCrossRefGoogle Scholar
  8. Billingsley, P. R., and Ranson, S. W., 1918, On the number of nerve cells in the ganglion cervicale superius and of nerve fibres in the cephalic end of the truncus in the cat and on the numerical relations of preganglionic and postganglionic neurones, J. Comp. Neurol. 29:359.CrossRefGoogle Scholar
  9. Birks, R., and Macintosh, F. C., 1961, Acetylcholine metabolism of a sympathetic ganglion, Can. J. Biochem. Physiol. 39:787.CrossRefGoogle Scholar
  10. Blackman, J. G., and Purves, R. D., 1969, Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig, J. Physiol. (London) 203:173.Google Scholar
  11. Blackman, J. G., Ginsborg, B. L., and Ray, C., 1963, Spontaneous synaptic activity in sympathetic ganglion cells of the frog, J. Physiol. (London) 167:389.Google Scholar
  12. Blackman, J. G., Crowcroft, P. J., Devine, C. E., Holman, M. E., and Yonemura, K., 1969, Transmission from preganglionic fibres in the hypogastric nerve to peripheral ganglia of male guinea-pigs, J. Physiol. (London) 201:723.Google Scholar
  13. Bowman, W. C., and Nott, M. W., 1969, Actions of sympathomimetic amines and their antagonists on skeletal muscle, Pharmacol. Rev. 21:27.PubMedGoogle Scholar
  14. Bracho, H., and Orkand, R. K., 1970, Effect of calcium on excitatory neuromuscular transmission in the crayfish, J. Physiol. (London) 206:61.Google Scholar
  15. Brimble, M. J., Wallis, D. I., and Woodward, B., 1972, Facilitation and inhibition of cell groups within the superior cervical ganglion of the rabbit, J. Physiol. (London) 226:629.Google Scholar
  16. Bronk, D. W., 1939, Synaptic mechanisms in sympathetic ganglia, J. Neurophysiol. 2:380.Google Scholar
  17. Brown, A. M., 1967, Cardiac sympathetic adrenergic pathways in which synaptic transmission is blocked by atropine sulfate, J. Physiol. (London) 191:271.Google Scholar
  18. Brown, D. A., 1966, Depolarization of normal and preganglionically denervated superior cervical ganglia by stimulant drugs, Br. J. Pharmacol. Chemother. 26:511.PubMedGoogle Scholar
  19. Brown, D. A., Brownstein, M. J., and Scholfield, C. N., 1969, On the nature of the drug-induced after-hyperpolarization in isolated rat ganglia, Br. J. Pharmacol. 37:511.Google Scholar
  20. Brown, D. A., Brownstein, M. J., and Scholfield, C. N., 1972, Origin of the after-hyperpolarization that follows removal of depolarizing agents from the isolated superior cervical ganglion of the rat, Br. J. Pharmacol. 44:651.PubMedGoogle Scholar
  21. Brown, G. L., 1934, Conduction in the cervical sympathetic, J. Physiol. (London) 81:228.Google Scholar
  22. Bülbring, E., 1944, The action of adrenaline on transmission in the superior cervical ganglion, J. Physiol. (London) 103:55.Google Scholar
  23. Bülbring, E., and Burn, J. H., 1942, An action of adrenaline on transmission in sympathetic ganglia which may play a part in shock, J. Physiol. (London) 101:289.Google Scholar
  24. Butcher, R. W., and Sutherland, E. W., 1962, Adenosine 3′, 5′-phosphate in biological materials, J. Biol. Chem. 237:1244.PubMedGoogle Scholar
  25. Chen, S. S., 1969, Late contraction of nictitating membrane of the dog, Am. J. Physiol. 217:1205.PubMedGoogle Scholar
  26. Chen, S. S., 1971, Transmission in superior cervical ganglion of the dog after cholinergic suppression, Am. J. Physiol. 221:209.PubMedGoogle Scholar
  27. Chen, S. S., 1972, Late discharges in dog’s sympathetic ganglia, Can. J. Physiol. 50:263.CrossRefGoogle Scholar
  28. Chen, S. S., 1974, Biphasic stimulation of the canine superior cervical ganglion (SCG) by K+ Fed. Proc. 33:552.Google Scholar
  29. Christ, D. D., and Nishi, S., 1969, Presynaptic action of epinephrine on sympathetic ganglia Life Sci. 8:1235.PubMedCrossRefGoogle Scholar
  30. Christ, D. D., and Nishi, S., 1971a, Site of adrenaline blockade in the superior cervical ganglion of the rabbit, J. Physiol. (London) 213:107Google Scholar
  31. Christ, D. D., and Nishi, S., 19716, Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit, Br. J. Pharmacol. 41:331.Google Scholar
  32. Collier, B., Vickerson, F. H. L., and Varma, D. R., 1969, Effect of acetylcholine (ACh) on transmitter release in cat superior cervical ganglion, Fed. Proc. 28:670.Google Scholar
  33. Coombs, J. S., Curtis, D. R., and Eccles, J. C., 1957a, The interpretation of spike potentials of motoneurons, J. Physiol. (London) 139:198.Google Scholar
  34. Coombs, J. S., Curtis, D. R., and Eccles, J. C., 1957b, The generation of impulses in moto-neurones, J. Physiol. (London) 139:232.Google Scholar
  35. Corne, S. J., and Edge, N. D., 1958, Pharmacological properties of pempidine (1:2:2:6:6-pentamethylpiperidine), a new ganglion blocking compound, Br. J. Pharmacol. Chemother 13:339.PubMedGoogle Scholar
  36. Costa, E., Revzin, A. M., Kuntzman, R., Spector, S., and Brodie, B. R., 1961, Role for ganglionic norepinephrine in sympathetic synaptic transmission, Science (New York) 133:1822.CrossRefGoogle Scholar
  37. Crowcroft, P. J., and Szurszewski, J. H., 1971, A study of the inferior mesenteric and pelvic ganglion of guinea-pigs with intracellular electrodes, J. Physiol. (London) 219:421.Google Scholar
  38. De Castro, F., 1932, Sympathetic ganglia, normal and pathological, in Cytology and Cellular Pathology of the Nervous System (W. Penfield, ed.), Vol. 1, p. 319, P. B., Hoeber, New York.Google Scholar
  39. De Groat, W. C., and Voile, R. L., 1963, Ganglionic actions of oxotremorine, Life. Sci. 8:618.CrossRefGoogle Scholar
  40. De Groat, W. C., and Voile, R. L., 1966, The actions of the catecholamines on transmission in the superior cervical ganglion of the cat, J. Pharmacol. Exp. Ther. 154:1.PubMedGoogle Scholar
  41. de Robertis, E. D. P., 1964, Histophysiology of Synapses and Neurosecretion, Pergamon, Oxford.Google Scholar
  42. de Robertis, E. D. P., and Bennett, H. S., 1954, Submicroscopic vesicular component in the synapse, Fed. Proc. 13:35.Google Scholar
  43. del Castillo, J., and Katz, B., 1954, Statistical factors involved in neuromuscular facilitation and depression, J. Physiol. (London) 124:574.Google Scholar
  44. del Castillo, J., and Katz, B., 1955, On the localization of acetylcholine receptors, J. Physiol (London) 128:157.Google Scholar
  45. Dempsher, J., and Riker, W. K., 1957, The role of acetylcholine in virus-infected sympathetic ganglia, J. Physiol. (London) 139:145.Google Scholar
  46. Dempsher, J., Larrabee, M. G., Bang, F. B., and Bodian, D., 1955, Physiological changes in sympathetic ganglia infected with Pseudorabies virus, Am. J. Physiol. 182:203.PubMedGoogle Scholar
  47. Dodge, F. A., and Rahamimoff, P., 1967, Co-operative action of calcium ions in transmitter release at the neuromuscular junction, J. Physiol. (London) 193:419.Google Scholar
  48. Douglas, W. W., and Lywood, D. W., 1961, The stimulant effect of TEA on acetylcholine output from the superior cervical ganglion: Comparison with barium, Fed. Proc. 20:324.Google Scholar
  49. Douglas, W. W., Lywood, D. W., and Straub, R. W., 1960, On the excitant effect of acetylcholine on structure in the preganglionic trunk of the cervical sympathetic: With a note on the anatomical complexities of the region, J. Physiol. (London) 153:250.Google Scholar
  50. Dun, N., and Nishi, S., 1974, Effects of dopamine on the superior cervical ganglion of the rabbit, J. Physiol. (London) 239:155.Google Scholar
  51. Eccles, J. C., 1935, Facilitation and inhibition in the superior cervical ganglion, J. Physiol. (London) 85:207.Google Scholar
  52. Eccles, J. C., 1936, Synaptic and neuromuscular transmission, Ergeh. Physiol. 38:339.Google Scholar
  53. Eccles, J. C., 1943, Synaptic potentials and transmission in sympathetic ganglion, J. Physiol. (London) 101:464.Google Scholar
  54. Eccles, R. M., 1952, Responses of isolated curarized sympathetic ganglia, J. Physiol. (London) 117:196Google Scholar
  55. Eccles, R. M., 1955, Intracellular potentials recorded from a mammalian sympathetic ganglion, J. Physiol. (London) 130:572.Google Scholar
  56. Eccles, R. M., 1963, Orthodromic activation of single ganglion cells, J. Physiol. (London) 165:387Google Scholar
  57. Eccles, R. M., and Libet, B., 1961, Origin and blockade of the synaptic responses of curarized sympathetic ganglia, J. Physiol. (London) 157:484.Google Scholar
  58. Elfvin, L. G., 1963, The ultrastructure of the superior cervical sympathetic ganglion of the cat: II. The structure of the preganglionic end fibres and the synapse as studied by serial sections, J. Ultrastruct. Res. 8:441.CrossRefGoogle Scholar
  59. Elfvin, L. G., 1968, A new granule-containing nerve cell in the inferior mesenteric ganglion of the rabbit, J. Ultrastruct. Res. 22:37.PubMedCrossRefGoogle Scholar
  60. Elmqvist, D., and Quastel, D. M., 1965, A quantitative study of end-plate potentials in isolated human muscle, J. Physiol. (London) 178:505.Google Scholar
  61. Emmelin, N., and Macintosh, F. C., 1956, The release of acetylcholine from perfused sympathetic ganglia and skeletal muscles, J. Physiol. (London) 131:477.Google Scholar
  62. Endo, M., Tanaka, M., and Ogawa, Y., 1970, Calcium induced release of calcium from the sarcoplasmic reticulum of skinned muscle fibres, Nature (London) 228:34.CrossRefGoogle Scholar
  63. Erulkar, S. D., and Woodward, J. K., 1968, Intracellular recording from mammalian superior cervical ganglion in situ, J. Physiol. (London) 199:189.Google Scholar
  64. Fatt, P., 1957, Sequence of events in synaptic activation of a motoneurone, J. Neurophysiol. 20:61.PubMedGoogle Scholar
  65. Flacke, W., and Gillis, R. A., 1968, Impulse transmission via nicotinic and muscarinic pathways in the stellate ganglion of the dog, J. Pharmacol. Exp. Ther. 163:266.PubMedGoogle Scholar
  66. Fujimoto, S., 1967, Some observations on the fine structure of the sympathetic ganglion of the toad, Bufo vulgaris japonicus, Arch. Histol. Jpn. 28:313.PubMedCrossRefGoogle Scholar
  67. Fuortes, M. G. F., Frank, K., and Becker, M. D., 1957, Steps in the production of motoneuron spikes, J. Gen. Physiol. 40:735.PubMedCrossRefGoogle Scholar
  68. Gallagher, J. P., Tashiro, N., and Nishi, S., 1973, Facilitation and depression of fast EPSP’s in bullfrog sympathetic ganglion cells, Fed. Proc. 32:799.Google Scholar
  69. Gebber, G. L., 1968, Prolonged ganglionic facilitation and the positive afterpotential, Int. J. Neuropharmacol. 7:195.PubMedCrossRefGoogle Scholar
  70. Ginsborg, B. L., 1971, On the presynaptic acetylcholine receptors in sympathetic ganglia of the frog, J. Physiol. (London) 216:237.Google Scholar
  71. Greengard, P., and Straub, R. W., 1959, Restoration by barium of action potentials in sodium-deprived mammalian B and C fibres. J. Physiol. (London) 145:562.Google Scholar
  72. Grillo, M. A., 1966, Electron microscopy of sympathetic tissues, Pharmacol. Rev. 18:387.PubMedGoogle Scholar
  73. Gualtierotti, T., 1955a, Variations in the frog’s spinal reflexes caused by the action on the brain of large doses of caffeine, J. Physiol. (London) 128:320.Google Scholar
  74. Gualtierotti, T., 1955b, The contribution of spinal centers to the action of caffeine on frog’s spinal reflexes, J. Physiol. (London) 128:326.Google Scholar
  75. Gyermek, L., Sigg, E. B., and Binder, E., 1963, Ganglionic stimulant action of muscarine, Am. J. Physiol. 204:68.PubMedGoogle Scholar
  76. Hahn, R., 1960, Analeptics, Pharmacol. Rev. 12:447.PubMedGoogle Scholar
  77. Hilton, J. G., 1961, The pressor response to neostigmine after ganglionic blockade, J. Pharmacol. Exp. Ther. 132:23.PubMedGoogle Scholar
  78. Hodgkin, A. L., and Keynes, R. D., 1957, Movements of labelled calcium in squid giant axons, J. Physiol. (London) 138:253.Google Scholar
  79. Hubbard, J. I., and Schmidt, R. F., 1961, Stimulation of motor nerve terminals, Nature (London) 191:1003.CrossRefGoogle Scholar
  80. Hubbard, J. I., Jones, S. F., and Landau, E. C., 1968, On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses, J. Physiol. (London) 196:75.Google Scholar
  81. Huber, B. C., 1899, A contribution on the minute anatomy of the sympathetic ganglia of the different classes of vertebrates, J. Morphol. 17:27.CrossRefGoogle Scholar
  82. Hunt, C. C., and Nelson, P. G., 1965, Structural and functional changes in the frog sympathetic ganglion following cutting of the presynaptic nerve fibres, J. Physiol. (London) 177:1.Google Scholar
  83. Jacobowitz, D., 1970, Catecholamine fluorescence studies of adrenergic neurons and chromaffin cells in sympathetic ganglia, Fed. Proc. 29:1929.PubMedGoogle Scholar
  84. Jenkinson, D. H., 1957, The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction, J. Physiol. (London) 138:434.Google Scholar
  85. Jenkinson, D. H., Stamenovic, B. A., and Whitaker, B. D. L., 1968, The effect of noradrenaline on the end-plate potential in twitch fibres of the frog, J. Physiol. (London) 195:743.Google Scholar
  86. Jones, A., 1963, Ganglionic actions of muscarinic substances, J. Pharmacol. Exp. Ther. 141:195.PubMedGoogle Scholar
  87. Katz, B., and Miledi, R., 1965, The effect of calcium on acetylcholine release from motor nerve terminals, J. Physiol. (London) 161:496.Google Scholar
  88. Katz, B., and Miledi, R., 1967, The timing of calcium action during neuromuscular transmission, J. Physiol. (London) 189:535.Google Scholar
  89. Katz, B., and Miledi, R., 1968, The role of calcium in neuromuscular facilitation, J. Physiol. (London) 195:481.Google Scholar
  90. Katz, B., and Miledi, R., 1970, Further study of the role of calcium in synaptic transmission, J. Physiol. (London) 207:789.Google Scholar
  91. Kewitz, H., and Reinert, H., 1952, Prüfung Pharmakologischer Wirkungen oberen sympathischen Halsgangüon bei verschiedenen Erregungzuständen, Arch. Exp. Pathol. Pharmakol. 215:547.CrossRefGoogle Scholar
  92. Kobayashi, H., and Libet, B., 1968, Generation of slow postsynaptic potentials without increases in ionic conductance, Proc. Natl. Acad. Sci. U.S.A. 60:1304.PubMedCrossRefGoogle Scholar
  93. Kobayashi, H., and Libet, B., 1970, Actions of norepinephrine and acetylcholine on sympathetic ganglion cells, J. Physiol. (London) 208:353.Google Scholar
  94. Koelle, G. B., 1961, A proposed dual neurohumoral role of acetylcholine: Its functions at the pre- and postsynaptic sites, Nature (London) 190:208.CrossRefGoogle Scholar
  95. Koelle, G. B., 1962, A new general concept of the neurohumoral functions of acetylcholine and acetylcholinesterases, J. Pharm. Pharmacol. 14:65.PubMedCrossRefGoogle Scholar
  96. Koelle, W. A., and Koelle, G. B., 1959, The location of external or functional acetylcholinesterase at the synapses of autonomic ganglia, J. Pharmacol. Exp. Ther. 126:1.PubMedGoogle Scholar
  97. Koketsu, K., 1969, Cholinergic synaptic potentials and the underlying ionic mechanisms, Fed. Proc. 28:101.PubMedGoogle Scholar
  98. Koketsu, K., and Nishi, S., 1967, Characteristics of the slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion cells, Life Sci. 6:1827.PubMedCrossRefGoogle Scholar
  99. Koketsu, K., and Nishi, S., 1968, Cholinergic receptors at sympathetic preganglionic nerve terminals, J. Physiol. (London) 196:293.Google Scholar
  100. Koketsu, K., and Nishi, S., 1969, Calcium and action potentials of bullfrog sympathetic ganglion cells, J. Gen. Physiol. 53:608.PubMedCrossRefGoogle Scholar
  101. Koketsu, K., Nishi, S., and Soeda, H., 1968, Acetylcholine-potential of sympathetic ganglion cell membrane, Life Sci. 7:741.CrossRefGoogle Scholar
  102. Konzett, H., 1950, Sympathomimetica und Sympathicolytica am isoliert durchströmten Ganglion Cervicale superius der Katze, Helv. Physiol. Pharmacol. Acta 8:245.PubMedGoogle Scholar
  103. Konzett, H., and Waser, P. G., 1956, Zur ganglionären Wirkung von Muscarin, Helv. Physiol. Acta 14:202.Google Scholar
  104. Koppanyi, T., 1932, Studies on the synergism antagonism of drugs. I. The non-parasympathetic antagonism between atropine and the miotic alkaloids, J. Pharmacol. Exp. Ther. 46:395.Google Scholar
  105. Kosterlitz, H. W., and Wallis, D. L., 1966, The use of the sucrose-gap method for recording ganglionic potentials, J. Physiol. (London) 183:1p.Google Scholar
  106. Kosterlitz, H. W., Lees, G. M., and Wallis, D. L, 1968, Resting and action potentials recorded by the sucrose-gap method in the superior cervical ganglion of the rabbit, J. Physiol. (London) 195:39.Google Scholar
  107. Kosterlitz, H. W., Lees, G. M., and Wallis, D. I., 1970, Further evidence for an electrogenic sodium pump in a mammalian sympathetic ganglion, Br. J. Pharmacol. 40:275.PubMedGoogle Scholar
  108. Krnjevic, K., and Miledi, R., 1958, Some effects produced by adrenaline upon neuromuscular propagation in rats, J. Physiol. (London) 141:291.Google Scholar
  109. Kuba, K., and Nishi, S., 1971, Membrane current associated with the fast EPSP of sympathetic neurons, Physiologist 14:176.Google Scholar
  110. Kuba, K., Minota, S., and Nishi, S., 1972, Spontaneous and evoked slow hyperpolarizations in caffeine treated bullfrog sympathetic ganglion cell, Fed. Proc. 31:319.Google Scholar
  111. Larrabee, M.G., and Bronk, D. W., 1947, Prolonged facilitation of synaptic excitation in sympathetic ganglia, J. Neurophysiol. 10:139.PubMedGoogle Scholar
  112. Larrabee, M. G., and Posternak, J. M., 1952, Selective action of anesthetics in synapses and axons in mammalian sympathetic ganglia, J. Neurophysiol. 15:91.PubMedGoogle Scholar
  113. Lees, G. M., and Nishi, S., 1972, Analysis of the mechanism of action of some ganglion-blocking drugs in the rabbit superior cervical ganglion, Br. J. Pharmacol. 46:78.PubMedGoogle Scholar
  114. Lees, G. M., and Wallis, D. I., 1974, Hyperpolarization of rabbit superior cervical ganglion cells due to activity of an electrogenic sodium pump, Br. J. Pharmacol. 50:79.PubMedGoogle Scholar
  115. Levy, B., and Ahlquist, R. P., 1962, A study of sympathetic ganglionic stimulants, J. Pharmacol. Exp. Ther. 137:219.Google Scholar
  116. Libet, B., 1962, Slow synaptic responses in sympathetic ganglia, Fed. Proc. 21:345.Google Scholar
  117. Libet, B., 1964, Slow synaptic responses and excitatory changes in sympathetic ganglia, J. Physiol. (London) 174:1.Google Scholar
  118. Libet, B., 1967, Long latent periods and further analysis of slow synaptic responses in sympathetic ganglia, J. Neurophysiol. 30:494.PubMedGoogle Scholar
  119. Libet, B., 1970, Generation of slow inhibitory and excitatory postsynaptic potentials, Fed. Proc. 29:1945.PubMedGoogle Scholar
  120. Libet, B., and Gerard, R. W., 1941, Steady potential fields and neurone activity, J. Neurophysiol. 4:438.Google Scholar
  121. Libet, B., and Kobayashi, H., 1968, Electrogenesis of slow postsynaptic potentials in sympathetic ganglion cells, Fed. Proc. 27:750.Google Scholar
  122. Libet, B., and Kobayashi, H., 1969, Generation of adrenergic and cholinergic potentials in sympathetic ganglion cells, Science (New York) 164:1530.CrossRefGoogle Scholar
  123. Libet, B., and Owman Ch., 1974, Concomitant changes in formaldehyde-induced fluoresence of dopamine interneurones and in slow inhibitory postsynaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent, J. Physiol. 237:635.PubMedGoogle Scholar
  124. Libet, B., and Tosaka, T., 1966, Slow postsynaptic potentials recorded intracellularly in sympathetic ganglia, Fed. Proc. 25:270.Google Scholar
  125. Libet, B., Chichibu, S., and Tosaka, T., 1968, Slow synaptic responses and excitability in sympathetic ganglia of the bullfrog, J. Neurophysiol. 31:383.PubMedGoogle Scholar
  126. Liley, A. W., 1956, The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction, J. Physiol. (London) 134:427.Google Scholar
  127. Liley, A. W., and North, K. A. K., 1953, An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction, J. Neurophysiol. 16:509.PubMedGoogle Scholar
  128. Lipicky, R. J., Hertz, L., and Shanes, A. M., 1963, Ca45 transfer and acetylcholine release in the rabbit superior cervical ganglion, J. Cell. Comp. Physiol. 62:233.CrossRefGoogle Scholar
  129. Lloyd, D. P. C., 1937, The transmission of impulses through the inferior mesenteric ganglia, J. Physiol. (London) 91:296.Google Scholar
  130. Lloyd, D. P. C., 1939, The excitability states of inferior mesenteric ganglion cells following preganglionic activation, J. Physiol. (London) 95:464.Google Scholar
  131. Long, J. P., and Eckstein, J. W., 1961, Ganglionic actions of neostigmine methylsulfate, J. Pharmacol. Exp. Ther. 133:216.PubMedGoogle Scholar
  132. Lundberg, A., 1952, Adrenaline and transmission in the sympathetic ganglion of the cat, Acta Physiol. Scand. 26:252.PubMedCrossRefGoogle Scholar
  133. Lundberg, A., and Quilisch, H., 1953, On the effect of calcium on presynaptic potentiation and depression at the neuromuscular junction. Acta Physiol. Scand. 30 (Suppl. 3):121.Google Scholar
  134. Maiti, A., and Domino, E. F., 1961, Effects of methylated xanthines on the neuronally isolated cerebral cortex, Exp. Neurol. 3:18.PubMedCrossRefGoogle Scholar
  135. Mallart, A., and Martin, A. R., 1968, The relation between quantum content and facilitation at the neuromuscular junction of the frog, J. Physiol. (London) 196:593.Google Scholar
  136. Malméjac, J., 1955, Action of adrenaline on synaptic transmission and on adrenal medullary secretion, J. Physiol. (London) 130:497.Google Scholar
  137. Marrazzi, A. S., 1939a, Adrenergic inhibition at sympathetic synapses, Am. J. Physiol. 127:738.Google Scholar
  138. Marrazzi, A. S., 1939b, Electrical studies on the pharmacology of autonomic synapses. I. The action of parasympathetic drugs on sympathetic ganglia, J. Pharmacol. Exp. Ther. 65:18.Google Scholar
  139. Martin, A. R., 1955, A further study of the statistical composition of the endplate potential, J. Physiol. (London) 130:114.Google Scholar
  140. Martin, A. R., and Pilar, G., 1963a, Dual mode of synaptic transmission in the avian ciliary ganglion, J. Physiol. (London) 168:443.Google Scholar
  141. Martin, A. R., and Pilar, G., 1963b, Transmission through the ciliary ganglion of the chick, J. Physiol. (London) 168:464.Google Scholar
  142. Masland, R. L., and Wigton, R. S., 1940, Nerve activity accompanying fasciculation produced by prostigmine, J. Neurophysiol. 3:269.Google Scholar
  143. Mason, D. F. J., and Wien, R., 1955, The actions of heterocyclic bisquaternary compounds especially of a pyrrolidinium series, Br. J. Pharmacol. Chemother. 10:124.PubMedGoogle Scholar
  144. Matthews, E. K., 1966, The presynaptic effects of quaternary ammonium compounds on the acetylcholine metabolism of a sympathetic ganglion, Br. J. Pharmacol. Chemother. 26:552.PubMedGoogle Scholar
  145. Matthews, E. K., and Quilliam, J. P., 1964, Effects of central depressant drugs upon acetylcholine release, Br. J. Pharmacol. Chemother. 22:415.PubMedGoogle Scholar
  146. Matthews, M. R., and Raisman, G., 1968, Two cell types in the superior cervical ganglion of the rat, J. Anat. 103:397.Google Scholar
  147. Matthews, M. R., and Raisman, G., 1969, The infrastructure and somatic efferent synapses of small granule-containing cells in the superior cervical ganglion, J. Anat. 105:255.PubMedGoogle Scholar
  148. Matthews, R. J., 1956, The effect of epinephrine, levarterenol and DL-isoproterenol on transmission in the superior cervical ganglion of the cat, J. Pharmacol. Exp. Ther. 116:433.PubMedGoogle Scholar
  149. Meech, R. W., and Strumwasser, F., 1970, Intracellular calcium injection activates potassium conductances in Aplysia nerve cells, Fed. Proc. 29:834.Google Scholar
  150. Nishi, S., 1970, Cholinergic and adrenergic receptors at sympathetic preganglionic nerve terminals, Fed. Proc. 29:1957.PubMedGoogle Scholar
  151. Nishi, S., 1973, Electrogenesis of muscarinic and noncholinergic slow EPSP’s of amphibian sympathetic ganglion cells, in Interneuronal Transmission in the Autonomic Nervous System (P. Kostyuk, ed.), pp. 112–135, Naukova Dumka, Kiev (in Russian).Google Scholar
  152. Nishi, S., and Christ, D. D., 1971, Electrophysiological and anatomical properties of mammalian parasympathetic ganglion cells, Proc. Int. Union Physiol. Sci. IX, P. 421.Google Scholar
  153. Nishi, S., and Koketsu, K., 1960, Electrical properties and activities of single sympathetic neurons in frogs, J. Cell. Comp. Physiol. 55:15.PubMedCrossRefGoogle Scholar
  154. Nishi, S., and Koketsu, K., 1966, Late after-discharge of sympathetic postganglionic fibers, Life Sci. 5:1991.CrossRefGoogle Scholar
  155. Nishi, S., and Koketsu, K., 1967, Excitatory and inhibitory postsynaptic potentials of amphibian sympathetic ganglion cells, Fed. Proc. 26:329.Google Scholar
  156. Nishi, S., and Koketsu, K., 1968a, Eearly and late after-discharges of amphibian sympathetic ganglion cells, J. Neurophysiol. 31:109.PubMedGoogle Scholar
  157. Nishi, S., and Koketsu, K., 1968b, Analysis of slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion, J. Neurophysiol. 31:717.PubMedGoogle Scholar
  158. Nishi, S., and Koketsu, K., 1968c, Underlying mechanisms of ganglionic slow IPSP and post-tetanic hyperpolarization of pre- and postganglionic elements, Proc. Int. Union Physiol. Sci., VII, p. 321.Google Scholar
  159. Nishi, S., and North, R. A., 1973, Intracellular recording from the myenteric plexus of the guinea-pig ileum, J. Physiol. (London) 231:471.Google Scholar
  160. Nishi, S., Soeda, H., and Koketsu, K., 1965, Studies on sympathetic B and C neurons and patterns of preganglionic innervation, J. Cell. Comp. Physiol. 66:19.CrossRefGoogle Scholar
  161. Nishi, S., Soeda, H., and Koketsu, K., 1967, Release of acetylcholine from sympathetic ganglionic nerve terminals, J. Neurophysiol. 30:114.Google Scholar
  162. Nishi, S., Soeda, H., and Koketsu, K., 1969a, Unusual nature of ganglionic slow EPSP studied by a voltage clamp method, Life Sci. 8:33.PubMedCrossRefGoogle Scholar
  163. Nishi, S., Soeda, H., and Koketsu, K., 1969b, Influence of membrane potential on the fast acetylcholine potential of sympathetic ganglion cells, Life Sci. 8:499.PubMedCrossRefGoogle Scholar
  164. Norberg, K. A., and Hamberger, B., 1964, The sympathetic adrenergic neuron, Acta Physiol. Scand. 63 (Suppl. 238):1.Google Scholar
  165. Obrador, S., and Odoriz, J. B., 1936, Transmission through a lumbar sympathetic ganglion, J. Physiol. (London) 86:269.Google Scholar
  166. Ortiz, C. L., and Bracho, H., 1972, Effect of reduced calcium on excitatory transmitter release at the crayfish neuromuscular junction, Comp. Biochem. Physiol. 41:805.CrossRefGoogle Scholar
  167. Otsuka, M., Endo, M., and Nonomura, Y., 1962. Presynaptic nature of neuromuscular depression, Jpn. J. Physiol. 12:573.PubMedCrossRefGoogle Scholar
  168. Pappano, A. J., and Volle, R. L., 1962, The reversal by atropine of ganglionic blockade produced by acetylcholine or methacholine, Life Sci. 12:677.CrossRefGoogle Scholar
  169. Pardo, E. G., Cato, J., Gijon, E., and Alonso de Florida, F., 1963, Influence of several adrenergic drugs on synaptic transmission through the superior cervical and the ciliary ganglia of the cat, J. Neurophysiol. 31:717.Google Scholar
  170. Pascoe, J. E., 1956, The effects of acetylcholine and other drugs on the isolated superior cervical ganglion, J. Physiol (London) 132:242.Google Scholar
  171. Paton, W. D. M., and Thompson, J. W., 1953, The mechanism of action of adrenaline on the superior cervical ganglion of the cat, Int. Physiol Congr. 19:664.Google Scholar
  172. Perri, V., Sacchi, O., and Casella, C., 1970, Electrical properties of the sympathetic neurons in the rat and guinea-pig superior cervical ganglion, Pflugers. Arch. ges. Physiol, 314:40.CrossRefGoogle Scholar
  173. Pick, J., 1963, On the submicroscopic organization of the sympathetic ganglion in the frog (Rana pipiens), J. Comp. Neurol 120:409.PubMedCrossRefGoogle Scholar
  174. Pick, J., 1970, The Autonomic Nervous System, pp. 103–185, J. B. Lippincott Company, Philadelphia.Google Scholar
  175. Poisner, A. M., 1973, Caffeine-induced catecholamine secretion: Similarity to caffeine-induced muscle contraction, Proc. Soc. Exp. Biol Med. 142:103.PubMedGoogle Scholar
  176. Rall, R. W., and Sattin, A., 1970, Factors influencing the accumulation of cyclic AMP in brain tissue, in Role of Cyclic AMP in Cell Function: Advances in Biochemical Psycho-pharmacology (P. Greengard and Costa, E., eds.) Vol. 3. pp. 113–133, Raven Press, New York.Google Scholar
  177. Rang, H. P., and Ritchie, J. M., 1968, On the electrogenic sodium pump in mammalian nonmyelinated nerve fibres and its activation by various external cations, J. Physiol. (London) 196:183.Google Scholar
  178. Riker, W. K., 1965, Effects of tetraethylammonium on synaptic transmission in the frog sympathetic ganglia, J. Pharmacol Exp. Ther. 147:161.PubMedGoogle Scholar
  179. Riker, W. K., and Szreniawski, Z., 1959, The pharmacological reactivity of presynaptic nerve terminals in a sympathetic ganglion, J. Pharmacol. Exp. Ther. 126:233.PubMedGoogle Scholar
  180. Root, M. A., 1951, Certain aspects of the vasopressor action of pilocarpine, J. Pharmacol Exp. Ther. 101:125.PubMedGoogle Scholar
  181. Roszkowski, A. P., 1961, An unusual type of sympathetic ganglionic stimulant. J. Pharmacol. Exp. Ther. 132:156.PubMedGoogle Scholar
  182. Sanghvi, I., Murayama, S., Smith, C. M., and Unna, K. R., 1963, Action of muscarine on the superior cervical ganglion of the cat, J. Pharmacol. Exp. Ther. 142:192.PubMedGoogle Scholar
  183. Sant’Ambrogio, G., Frazier, D. I., and Boyarsky, L. L., 1962, Effect of caffeine on spinal reflexes, Proc. Soc. Exp. Biol Med. 109:273.PubMedGoogle Scholar
  184. Shaw, F. W., MacCallum, M., Dewhurst, D. S., and Mainland, J. F., 1951, The possibility of the dual nature of sympathetic ganglion cells III, Aust. J. Exp. Biol Med. Sci. 29:153.PubMedCrossRefGoogle Scholar
  185. Siegrist, G., DeRibaupierre, F., Dolivo, M., and Rouiller, C., 1966, Les cellules chromaffines des ganglions cervicaux superieurs du rat, J. Microsc. (Paris) 5:791.Google Scholar
  186. Skok, V., 1968, The electrophysiology of cat’s superior cervical sympathetic ganglion neurons, Proc. Int. Union Physiol Sci., VII, P. 403.Google Scholar
  187. Takeshige, C., and Volle, R. L., 1962, Bimodal response of sympathetic ganglia to acetylcholine following eserine or repetitive preganglionic stimulation, J. Pharmacol. Exp. Ther. 138:66.PubMedGoogle Scholar
  188. Takeshige, C., and Volle, R. L., 1963a, Asynchronous postganglionic firing from resting sympathetic ganglia treated with neostigmine, Br. J. Pharmacol 20:214.Google Scholar
  189. Takeshige, C., and Volle, R. L., 1963b, Cholinoceptive sites in denervated gangha, J. Pharmacol. Exp. Ther. 141:206.PubMedGoogle Scholar
  190. Takeshige, C., and Volle, R. L., 1964, Modification of ganglionic responses to cholinomimetic drugs following preganglionic stimulation, anticholinesterase agents, and pilocarpine, J. Pharmacol Exp. Ther. 146:335.PubMedGoogle Scholar
  191. Takeshige, C., Pappano, A. J., De Groat, W. C., and Volle, R. L., 1963, Ganglionic blockade produced in sympathetic ganglia by cholinomimetic drugs, J. Pharmacol Exp. Ther. 141:333.PubMedGoogle Scholar
  192. Takeuchi, A., 1958, The long-lasting depression in neuromuscular transmission of frog, Jpn J. Physiol 8:102.PubMedCrossRefGoogle Scholar
  193. Takeuchi, A., and Takeuchi, N., 1960, On the permeability of end-plate membrane during the action of the transmitter, J. Physiol. (London) 154:52.Google Scholar
  194. Tashiro, N., and Nishi, S., 1972, Effects of alkali-earth cations on sympathetic ganglion cells of the rabbit, Life Sci. 11:941.CrossRefGoogle Scholar
  195. Taxi, J., 1961, Étude de l’ultrastructure des zones synaptiques dans les ganglions sympathiques de la Grenouille, C. R. Acad. Sci. 252:174.Google Scholar
  196. Thies, R. E., 1965, Neuromuscular depression and apparent depletion of transmitter in mammalian muscles, J. Neurophysiol. 28:427.Google Scholar
  197. Tosaka, T., and Libet, B., 1965, Slow postsynaptic potentials recorded intracellularly in sympathetic ganglia of the frog, Proc. Int. Union Physiol. Sei., IV, P. 386.Google Scholar
  198. Trendelenburg, U., 1954, The action of histamine and pilocarpine on the superior cervical ganglion and the adrenal glands of the cat, Br. J. Pharmacol. 9:481.Google Scholar
  199. Trendelenburg, U., 1956, Modification of transmission through the superior cervical ganglion of the cat, J. Physiol. (London) 132:529.Google Scholar
  200. Trendelenburg, U., 1966, Transmission of preganglionic impulses through the muscarinic receptors of the superior cervical ganglion of the cat, J. Pharmacol. Exp. Ther. 154:426.PubMedGoogle Scholar
  201. Uchizono, K., 1964, On different types of synaptic vesicles in the sympathetic ganglion of amphibia, Jpn. J. Physiol. 14:210.PubMedCrossRefGoogle Scholar
  202. Volle, R. L., 1962a, The actions of several ganglion blocking agents on the postganglionic discharge induced by diisopropyl phosphorofluoridate (DFP) in sympathetic ganglia. J. Pharmacol. Exp. Ther. 135:45.PubMedGoogle Scholar
  203. Volle, R. L., 1962b, Enhancement of postganglionic responses to stimulating agents following repetitive preganglionic stimulation, J. Pharmacol. Exp. Ther. 136:68.PubMedGoogle Scholar
  204. Volle, R. L., and Koelle, G. B., 1961, The physiological role of acetylcholinesterase (AChE) in sympathetic ganglia, J. Pharmacol. Exp. Ther. 133:223.PubMedGoogle Scholar
  205. Weber, A., and Herz, R., 1968, The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum, J. Gen. Physiol. 52:750.PubMedCrossRefGoogle Scholar
  206. Weight, F., and Padjen, A., 1972, Slow postsynaptic inhibition and sodium inactivation in frog sympathetic ganglion cells, Abstract 1489, 5th Int. Congr. Pharmacol., San Francisco.Google Scholar
  207. Weight, F. F., and Votava, J., 1970, Slow synaptic excitation in sympathetic ganglion cells: Evidence for synaptic inactivation of potassium conductance, Science (New York) 170:755.CrossRefGoogle Scholar
  208. Weir, M. C. L., and McLennan, H., 1963, The action of catecholamines in sympathetic ganglia, Can. J. Biochem. Physiol. 41:2627.PubMedCrossRefGoogle Scholar
  209. Williams, T. H., 1967a, Electron microscopic evidence for an autonomic interaeuron, Nature (London) 214:309.CrossRefGoogle Scholar
  210. Williams, T. H., 1967b, The question of the intraganglionic (connector) neuron of the autonomic nervous system, J. Anat. 101:603.Google Scholar
  211. Wolf, G. A., Jr., 1941, The ratio of preganglionic neurons to postganglionic neurons in the visceral nervous system, Anat. Rev. 79:80.Google Scholar
  212. Woodward, J. K., Bianchi, C. P., and Erulkar, S. D., 1969, Electrolyte distribution in rabbit superior cervical ganglion, J. Neurochem. 16:289.PubMedCrossRefGoogle Scholar
  213. Yamamoto, T., 1963, Some observations on the fine structure of the sympathetic ganglion of bullfrog, J. Cell Biol. 16:159.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Syogoro Nishi
    • 1
  1. 1.Department of PhysiologyKurume University School of MedicineKurume, 830Japan

Personalised recommendations