Advertisement

Cardiac Cellular Pharmacology: Automaticity in Cardiac Muscle—Its Alteration by Physical and Chemical Influences

  • Francis M. Weld
  • J. Thomas BiggerJr.

Abstract

The heart rhythmically and spontaneously activates itself many times in a minute. The process responsible for this behavior has been termed the “normal automatic mechanism” and is a property of only a few cell types in the heart. Cells in the sinoatrial node, atrioventricular rings, and ventricular specialized conducting tissues possess the capacity for automaticity of this type whereas ordinary atrial and ventricular muscle cells do not. This mechanism not only is the basis for normal cardiac rhythmicity but also can generate arrhythmias in the heart. Although the normal automatic mechanism is complex and probably varies somewhat in different types of automatic cells and in different species, much is now known about the cell membrane behavior which underlies automaticity and about alterations in this behavior caused by a variety of physical and chemical influences. In this chapter, it is our intention to discuss the factors which generate and modify the automaticity brought about in heart muscle by spontaneous diastolic depolarization.

Keywords

Outward Current Sodium Current Sinoatrial Node Purkinje Fiber Ventricular Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. H., 1956, The effects of internal and external potassium concentration on the membrane potential of frog muscle, J. Physiol. (London) 133:631.Google Scholar
  2. Adrian, R. H., 1969, Rectification in muscle membrane, Prog. Biovhys. Mol. Biol. 19:341.Google Scholar
  3. Antoni, H., Herkel, K., and Fleckenstein, A., 1963, Die Restitution der automatischen Erregungsbildung in Kaliumgelähmten Schrittmacher-Geweben durch Adrenalin, Pfluegers Arch. 277:633.Google Scholar
  4. Arnsdorf, M. F., and Bigger, J. T., Jr., 1972, Effect of lidocaine hydrochloride on membrane conductance in mammalian cardiac Purkinje fibers, J. Clin. Invest. 51:2252.PubMedGoogle Scholar
  5. Aronson, R. S., Gelles, J. M., and Hoffman, B. F., 1973, Effect of ouabain on the current underlying spontaneous diastolic depolarization in cardiac Purkinje fibers, Nature (New Biol.) 243:118.Google Scholar
  6. Arvanitaki, A., 1938, Propriétés rhythmiques de la matière vivante. II. Etude experimentale sur le myocarde d’hélix, Hermann & Cie., Paris.Google Scholar
  7. Bagdonas, A. A., Stuckey, J. H., Piera, J., Amer, N. S., and Hoffman, B. F., 1961, Effects of ischemia and hypoxia on the specialized conducting system of the canine heart, Am. Heart J. 61:206.PubMedGoogle Scholar
  8. Bailey, J. C., Greenspan, K., Elizari, M. V., Anderson, G. J., and Fisch, C., 1972, Effects of acetylcholine on automaticity and conduction in the proximal portion of the His-Purkinje specialized conduction system of the dog, Circ. Res. 30:210.PubMedGoogle Scholar
  9. Bassett, A. L., Bigger, J. T., Jr., and Hoffman, B. F., 1970, “Protective” action of diphenylhydantoin on canine Purkinje fibers during hypoxia, J. Pharmacol. Exp. Ther. 173:336.PubMedGoogle Scholar
  10. Bassett, A. L., and Wit, A. L., 1973, Recent advances in electrophysiology of antiarrhythmic drugs, Prog. Drug. Res. 17:33.PubMedGoogle Scholar
  11. Bigger, J. T., Jr., 1972a, Antiarrhythmic drugs in ischemic heart disease, Hosp. Pract. 7:69.Google Scholar
  12. Bigger, J. T., Jr., 1912b, Arrhythmias and antiarrhythmic drugs, Adv. Intern. Med. 18:251.Google Scholar
  13. Bigger, J. T., Jr., and Jaffe, C. C., 1971, The effect of bretylium tosylate on the electrophysiological properties of ventricular muscle and Purkinje fibers, Am. J. Cardiol. 27:82.PubMedGoogle Scholar
  14. Bigger, J. T., Jr., and Mandel, W. J., 1970, Effect of lidocaine on the electrophysiological properties of ventricular muscle and Purkinje fibers, J. Clin. Invest. 49:63.PubMedGoogle Scholar
  15. Bigger, J. T., Jr., and Weld, F. M., 1976, Arrhythmias and antiarrhythmic drugs, in Cardiac Physiology for the Clinician (M. Vassalle, ed.), Academic Press, New York.Google Scholar
  16. Bigger, J. T., Jr., Bassett, A. L., and Hoffman, B. F., 1968, Electrophysiological effects of diphenylhydantoin on canine Purkinje fibers, Circ. Res. 22:221.PubMedGoogle Scholar
  17. Bigger, J. T., Jr., Weinberg, D. I., Kovalik, A. T. W., Harris, P. D., Cranefield, P. F., and Hoffman, B. F., 1970, Effects of diphenylhydantoin on excitability and automaticity in the canine heart, Circ. Res. 26:1.PubMedGoogle Scholar
  18. Bonke, F. I. M., 1973a, Passive electrical properties of atrial fibers of the rabbit heart, Pfluegers Arch. 339:1.Google Scholar
  19. Bonke, F. I. M., 1973b, Electrotonic spread in the sinoatrial node of the rabbit heart, Pfluegers Arch. 339:16.Google Scholar
  20. Borasio, P. G., and Vassalle, M., 1970, Effects of norepinephrine on active transport and automaticity of cardiac Purkinje fibers, Physiologist 13:152.Google Scholar
  21. Bosteels, S., and Carmeliet, E., 1972a, Estimation of intracellular Na concentration and transmembrane Na flux in cardiac Purkinje fibers, Pfluegers Arch. 336:35.Google Scholar
  22. Bosteels, S., and Carmeliet, E., 1972b, The components of the sodium efflux in cardiac Purkinje fibers, Pfluegers Arch. 336:48.Google Scholar
  23. Bozler, E., 1943, Tonus changes in cardiac muscle and their significance for the initiation of impulses, Am. J. Physiol. 139:411.Google Scholar
  24. Brown, R. H., Jr., and Noble, D., 1972, Effect of pH on ionic currents underlying pacemaker activity in cardiac Purkinje fibers, J. Physiol (London) 224:38P.Google Scholar
  25. Burdon-Sanderson, J. S., and Page, F. J. M., 1880, On the time relations of the excitatory process in the ventricle of the frog, J. Physiol. (London) 2:384.Google Scholar
  26. Burdon-Sanderson, J. S., and Page, F. J. M., 1884, On the electrical phenomena of the excitatory process in the heart of the frog and of the tortoise, as investigated photographically, J. Physiol. (London) 4:327.Google Scholar
  27. Carmeliet, E., 1960, L’influence de la concentration extracellulaire du K sur la perméabilité de la membrane des fibres de Purkinje de mouton pour les ions 42K, Helv. Physiol. Pharmacol. Acta 18:C15.Google Scholar
  28. Carmeliet, E., 1961, Chloride ions and the membrane potential of Purkinje fibres, J. Physiol. (London) 156:375.Google Scholar
  29. Carmeliet, E., 1964, Influence of lithium ions on the transmembrane potential and cation content of cardiac cells, J. Gen. Physiol. 47:501.PubMedGoogle Scholar
  30. Carmeliet, E., and Bosteels, S., 1969, Coupling between CI flux and Na or K flux in cardiac Purkyne fibers: Influence of pH, Arch. Int. Physiol. Biochim. 77:57PubMedGoogle Scholar
  31. Carmeliet, E., and Vereecke, J., 1969, Adrenaline and the plateau phase of the cardiac action potential: Importance of Ca++, Na+, and K+ conductance, Pfluegers Arch. 313:300.Google Scholar
  32. Carmeliet, E., and Willems, J., 1971, The frequency dependent character of the membrane capacity in cardiac Purkyně fibres. J. Physiol. (London) 213:85.Google Scholar
  33. de Carvalho, A. P., Hoffman, B. F., and de Paula Carvalho, M., 1969, Two components of the cardiac action potential. I. Voltage-time course and the effect of acetylcholine on atrial and nodal cells of the rabbit heart, J. Gen. Physiol. 54:607.PubMedGoogle Scholar
  34. Colatsky, T. J., and Hogan, P. M., 1964, Effect of calcium and overdrive on automaticity in spontaneous and driven ventricular pacemaker cells, Fed. Proc. 33:432.Google Scholar
  35. Coraboeuf, E., and Boistel, J., 1953, L’action des taux élevés de gaz carbonique sur le tissu cardiaque, étudiée à l’aide de microélectrodes intracellulaires, C.R. Soc. Biol. (Paris) 147:654.Google Scholar
  36. Coraboeuf, E., and Weidmann, S., 1954, Temperature effects on the electrical activity of Purkinje fibres, Helv. Physiol. Pharmacol. Acta 12:32.PubMedGoogle Scholar
  37. Coraboeuf, E., Gargouil, Y.-M., Lapland, J., and Desplaces, A., 1958, Action de l’anoxie sur les potentiels électriques des cellules cardiaques de mammifères actives et inertes (tissu ventriculaire isolé de cobaye), CR. Acad. Sci., Ser. 246:3100.Google Scholar
  38. Davis, L. D., 1973, Effect of changes in cycle length on diastolic depolarization produced by ouabain in canine Purkinje fibers, Circ. Rec. 32:206.Google Scholar
  39. Davis, L. D., and Temte, J. V., 1968, Effects of propranolol on the transmembrane potentials of ventricular muscle and Purkinje fibers of the dog, Circ. Res. 22:661.PubMedGoogle Scholar
  40. Deck, K. A., 1964a, Dehnungseffekte am spontanschlagenden, isolierten Sinusknoten, Pfluegers Arch. 280:120.Google Scholar
  41. Deck, K. A., 1964b, Änderungen des Ruhepotentials und der Kabeleigenschaften von Purkinje-Fäden bei der Dehnung, Pfluegers Arch. 280:131.Google Scholar
  42. Deck, K. A., and Trautwein, W., 1964, Ionic currents in cardiac excitation, Pfluegers Arch. 280:63.Google Scholar
  43. Deck, K. A., Kern, R., and Trautwein, W., 1964, Voltage clamp technique in mammalian cardiac fibres, Pfluegers Arch. 280:50.Google Scholar
  44. Délèze, J., 1960, Possible reasons for drop of resting potential of mammalian heart preparations during hypothermia, Circ. Res. 82:553.Google Scholar
  45. Dominguez, G., and Fozzard, H. A., 1970, Influence of extracellular K+ concentration on cable properties and excitability of sheep cardiac Purkinje fibers, Circ. Res. 26:565.PubMedGoogle Scholar
  46. Draper, M. H., and Weidmann, S., 1951, Cardiac resting and action potentials recorded with an intracellular electrode, J. Physiol. (London) 115:74.Google Scholar
  47. Dudel, J., and Rudel, R., 1970, Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres, Pfluegers Arch. 315:136.Google Scholar
  48. Dudel, J., and Trautwein, W., 1958, Der Mechanismus der automatischen rhythmischen Impulsbildung der Herzmuskelfaser, Pfluegers Arch. 267:553.Google Scholar
  49. Dudel, J., Peper, K., Rüdel, R., and Trautwein, W., 1967a, The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers), Pfluegers Arch. 295:213.Google Scholar
  50. Dudel, J., Peper, K., Rüdel, R., and Trautwein, W., 1967b, The potassium component of membrane current in Purkinje fibers, Pfluegers Arch. 296:308.Google Scholar
  51. Dudel, J., Peper, K., Rüdel, R., and Trautwein, W., 1967c, The dynamic chloride component of membrane current in Purkinje fibers, Pfluegers Arch. 295:197.Google Scholar
  52. Falk, G., and Fatt, P., 1964, Linear electrical properties of striated muscle fibres observed with intracellular electrodes, Proc. R. Soc. London, Ser. B 160:69.Google Scholar
  53. Ferrier, G. R., Saunders, J. H., and Mendez, C., 1973, A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ. Res. 32:600.PubMedGoogle Scholar
  54. Fleckenstein, A., 1970, Die Zügelung des Myocardstoffwechsels durch Verapamil: Angriffspunkte und Anwendungsmöglichkeiten, Arzneim. Forsch. 20:1317.Google Scholar
  55. Fleckenstein, A., Tritthart, H., Fleckenstein, B., Herbst, A., and Grün, G., 1969a, Selective inhibition of myocardial contractility by competitive calcium antagonists (Iproveratril, D600, Prenylamine), Naunyn Schmiedebergs Arch. Pharmakol. 264:S227.Google Scholar
  56. Fleckenstein, A., Tritthart, H., Fleckenstein, B., Herbst, A., and Grün, G., 1969b, A new group of competitive calcium antagonists (Iproveratril, D600, Prenylamine) with highly potent inhibitory effects on excitation-contraction coupling in mammalian myocardium, Pfluegers Arch. 307:525.Google Scholar
  57. Fleckenstein, A., Tritthart, H., Döring, H.-J., and Byon, K. Y., 1972, BAY a 1040- ein hochaktiver Ca++-antagonistischer Inhibitor der elektro-mechanischen Koppelungsprozesse im Warmblüter-Myokard, Arzneim. Forsch. 22:22.Google Scholar
  58. Fozzard, H. A., 1966, Membrane capacity of the cardiac Purkinje fibre, J. Physiol. (London) 182:255.Google Scholar
  59. Fozzard, H. A., and Hiraoka, M., 1973, The positive dynamic current and its inactivation properties in cardiac Purkinje fibres, J. Physiol. (London) 234:569.Google Scholar
  60. Fozzard, H. A., and Schoenberg, M., 1972, Strength-duration curves in cardiac Purkinje fibres: Effects of liminal length and charge distribution. J. Physiol (London) 226:593.Google Scholar
  61. Freygang, W. H., and Trautwein, W., 1970, The structural implications of the linear electrical properties of cardiac Purkinje strands, J. Gen. Physiol. 55:524.Google Scholar
  62. Friedman, P. L., Stewart, J. R., and Wit, A. L., 1973, Spontaneous and induced cardiac arrhythmias in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs, Circ. Res. 33:612.PubMedGoogle Scholar
  63. Gaskell, W. H., 1884, On the innervation of the heart, with especial reference to the heart of the tortoise, J. Physiol. (London) 4:43.Google Scholar
  64. Glitsch, H. G., 1972, Activation of the electrogenic sodium pump in guinea-pig auricles by internal sodium ions, J. Physiol. (London) 220:565.Google Scholar
  65. Gough, W. B., Dreifus, L. S., and Morad, M., 1974, Dependence of pacemaker potential on catecholamines and Ca+2, Fed. Proc. 33:432.Google Scholar
  66. Haas, H. G., and Kern, R., 1966, Potassium fluxes in voltage clamped Purkinje fibers, Pfluegers Arch. 291:69Google Scholar
  67. Haas, H. G., Kern, R., Einwächter, H. M., and Tarr, M., 1971, Kinetics of Na inactivation in frog atria, Pfluegers Arch. 323:141.Google Scholar
  68. Hall, A. E., Hutter, O. F., and Noble, D., 1963, Current-voltage relations of Purkinje fibres in sodium-deficient solutions, J. Physiol. (London) 166:225.Google Scholar
  69. Hauswirth, O., 1969a, Influence of halothane on the electrical properties of cardiac Purkinje fibres, J. Physiol. (London) 201:42P.Google Scholar
  70. Hauswirth, O., 1969b, Effects of halothane on single atrial, ventricular, and Purkinje fibers, Circ. Res. 24:745.PubMedGoogle Scholar
  71. Hauswirth, O., 1971, Computer Rekonstruktionen der Effekte von Polarisationsströmen und Pharmaka auf Schrittmacher—und Aktionspotentiale von Herzmuskelfasern, Doctoral thesis, Ruprecht-Karl-Universität zu Heidelberg.Google Scholar
  72. Hauswirth, O., and Schaer, H., 1967, Effects of halothane on the sino-atrial node, J. Pharmacol. Exp. Ther. 158:36.PubMedGoogle Scholar
  73. Hauswirth, O., McAllister, R. E., Noble, D., and Tsien, R. W., 1968a, Measurement of voltage clamp currents and reconstruction of electrical activity in Purkinje fibres under normal conditions and under the influence of adrenaline, J. Physiol. (London) 198:8P.Google Scholar
  74. Hauswirth, O., Noble, D., and Tsien, R. W., 1968b, Adrenaline: Mechanism of action on the pacemaker potential in cardiac Purkinje fibers, Science 162:916.PubMedGoogle Scholar
  75. Hauswirth, O., McAllister, R. E., Noble, D., and Tsien, R. W., 1969, Reconstruction of the actions of adrenaline and calcium on cardiac pacemaker potentials, J. Physiol. (London) 204:126P.Google Scholar
  76. Hauswirth, O., Noble, D., and Tsien, R. W., 1972, Separation of the pace-maker and plateau components of delayed rectification in cardiac Purkinje fibres, J. Physiol. (London) 225:211.Google Scholar
  77. Hecht, H. H., and Hutter, O. F., 1965, Action of pH on cardiac Purkinje fibres, in Electro-physiology of the Heart (B. Taccardi and J. Marchetti, eds.), pp. 105–123, Pergamon Press, Oxford.Google Scholar
  78. Hille, B., 1968a, Pharmacological modifications of the sodium channels of frog nerve, J. Gen. Physiol. 51:199.Google Scholar
  79. Hille, B., 1968b, Charges and potentials at the nerve surface: Divalent ions and pH, J. Gen. Physiol. 58:221.Google Scholar
  80. Hiraoka, M., and Hecht, H. H., 1973, Recovery from hypothermia in cardiac Purkinje fibers: Considerations for an electrogenic mechanism, Pfluegers Arch. 339:25.Google Scholar
  81. Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. (London) 116:449.Google Scholar
  82. Hodgkin, A. L., and Huxley, A. F., 1952b, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116:473.Google Scholar
  83. Hodgkin, A. L., and Huxley, A. F., 1952c, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J. Physiol. (London) 116:497.Google Scholar
  84. Hodgkin, A. L., and Huxley, A. F., 1952d, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117:500.Google Scholar
  85. Hodgkin, A. L., and Rushton, W. A. H., 1946, The electrical constants of a crustacean nerve fibre, Proc. R. Soc. London (Biol.) 133:444.Google Scholar
  86. Hoffman, B. F., 1957, The action of quinidine and procaine amide on single fibers of dog ventricle and specialized conducting system, An. Acad. Bras. Cienc. 29:365.Google Scholar
  87. Hoffman, B. F., 1969, Effects of digitalis on electrical activity of cardiac fibers, in Digitalis (C. Fisch and B. Surawicz, eds.), pp. 93–109, Grune and Stratton, New York.Google Scholar
  88. Hoffman, B. F., and Cranefield, P. F., 1960, Electrophysiology of the Heart, McGraw-Hill, New York.Google Scholar
  89. Hoffman, B. F., and Singer, D. H., 1967, Appraisal of the effects of catecholamines on cardiac electrical activity, Ann. N.Y. Acad. Sci. 139:914.PubMedGoogle Scholar
  90. Hutter, O. F., and Noble, D., 1960, Rectifying properties of cardiac muscle, Nature (London) 188:495.Google Scholar
  91. Hutter, O. F., and Noble, D., 1961, Anion conductance of cardiac muscle, J. Physiol. (London) 157:335.Google Scholar
  92. Johnson, E. A., and McKinnon, M. G., 1957, The differential effect of quinidine and pyrilamine on the myocardial action potential at various rates of stimulation, J. Pharmacol. Exp. Ther. 120:460PubMedGoogle Scholar
  93. Juncker, D. F., Lee, P., Greene, E. A., Stish, R., and Lorber, V., 1974, Measurement of tracer influx profiles during the cardiac cycle, Fed. Proc. 33:445Google Scholar
  94. Kabela, E. L., 1973, The effects of lidocaine on potassium efflux from various tissues of dog heart, J. Pharmacol Exp. Ther. 184:611.PubMedGoogle Scholar
  95. Kamiyama, A., and Matsuda, K., 1966, Electrophysiological properties of the canine ventricular fiber, Jpn. J. Physiol. 16:407.PubMedGoogle Scholar
  96. Kassebaum, D. G., 1963, Electrophysiological effects of strophanthin in the heart, J. Pharmacol. Exp. Ther. 140:329.Google Scholar
  97. Kassebaum, D. G., 1964, Membrane effects of epinephrine in the heart, Proc. II. Int. Pharmacol. Meeting 5:95.Google Scholar
  98. Kawamura, K., 1961, Electron microscope studies on the cardiac conduction system of the dog. II. The sinoatrial and atrioventricular nodes, Jpn. Cire. J. 25:973.Google Scholar
  99. Koerpel, B. J., and Davis, L. D., 1972, Effects of lidocaine, propranolol, and Sotalol on ouabain-induced changes in transmembrane potential of canine Purkinje fibers, Circ. Res. 30:681.PubMedGoogle Scholar
  100. Kohlhardt, M., Bauer, B., Krause, H., Fleckenstein, A., 1972, New selective inhibitors of the transmembrane Ca conductivity in mammalian myocardial fibers. Studies with the voltage clamp technique, Experientia 28:288.PubMedGoogle Scholar
  101. Lange, G., 1965, Action of driving stimuli from intrinsic and extrinsic sources on in situ cardiac pacemaker tissues, Circ. Res. 17:449.PubMedGoogle Scholar
  102. Langendorf, R., Pick, A., and Winternitz, M., 1955, Mechanisms of intermittent ventricular bigeminy. I. Appearance of ectopic beats dependent upon length of the ventricular cycle, the “Rule of Bigeminy,” Circulation 11:422.PubMedGoogle Scholar
  103. Lathrop, D., Greenspan, K., and Freeman, A. R., 1974, Electrophysiological effects of hypoxia, hypothermia, acidity, stretch, and K+ on cardiac tissue, Fed. Proc. 33:445.Google Scholar
  104. Lenfant, J., Mironneau, J., and Aka, J.-K., 1972, Activité répétitive de la fibre sino-auriculaire de grenouille, J. Physiol. (Paris) 64:5.Google Scholar
  105. Lieberman, M., 1973, Electrophysiological studies of a synthetic strand of cardiac muscle, Physiologist 16:551.PubMedGoogle Scholar
  106. Linenthal, A. J., Zoll, P. M., Garabedian, G. H., and Huber, K., 1960, Ventricular slowing and standstill after spontaneous or electrically stimulated runs of rapid ventricular beats in atrioventricular block, Circulation 22:781.Google Scholar
  107. Ling, G., and Gerard, R. W., 1949, The normal membrane potential of frog sartorius fibers, J. Cell Physiol. 34:383Google Scholar
  108. Lu, H.-H., Lange, G., and Brooks, C. McC., 1965, Factors controlling pacemaker action in cells of the sinoatrial node, Circ. Res. 17:460.PubMedGoogle Scholar
  109. Mandel, W. J., and Bigger, J. T., Jr., 1971, Electrophysiologic effects of lidocaine on isolated canine and rabbit atrial tissue, J. Pharmacol. Exp. Ther. 178:81.PubMedGoogle Scholar
  110. Mandel, W. J., and Obayashi, K., 1974, Effects of changes in pH on action potential characteristics of canine Purkinje fibers, Clin. Res. 22:288A.Google Scholar
  111. Mandel, W. J., Bigger, J. T., Jr., and Butler, V. P., 1972, The electrophysiologic effects of low and high digoxin concentrations on isolated mammalian cardiac tissue: reversal by digoxin-specific antibody, J. Clin. Invest. 51:1378.PubMedGoogle Scholar
  112. McAllister, R. E., 1970, Two programs for computation of action potentials, stimulus responses, voltage clamp currents, and current-voltage relations of excitable membranes, Comput. Programs Biomed. 1:146.Google Scholar
  113. McAllister, R. E., and Noble, D., 1966, The time and voltage dependence of the slow outward current in cardiac Purkinje fibres, J. Physiol. (London) 186:632.Google Scholar
  114. McDonald, T. F., and MacLeod, D. P., 1971, Maintenance of resting potential in anoxic guinea pig ventricular muscle; Electrogenic sodium pumping, Science 172:570.PubMedGoogle Scholar
  115. Meek, W. J., and Eyster, J. A. E., 1914, Experiments on the origin and propagation of the impulse in the heart: IV. The effect of vagal stimulation and of cooling on the location of the pacemaker within the sinoauricular node, Am. J. Physiol. 34:368.Google Scholar
  116. Mobley, B. A., and Page, E., 1972, The surface area of sheep cardiac Purkinje fibres, J. Physiol. (London) 220:547.Google Scholar
  117. Müller, P., 1965, Ouabain effects on cardiac contraction, action potential, and cellular potassium, Circ. Res. 17:46.Google Scholar
  118. Narahashi, T., 1972, Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes, Fed. Proc. 31:1124.PubMedGoogle Scholar
  119. Narahashi, T., Moore, J. W., and Scott, W. R., 1964, Tetrodotoxin blockage of sodium conductance increase in lobster giant axons, J. Gen. Physiol. 47:965.PubMedGoogle Scholar
  120. Noble, D., 1962, A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials, J. Physiol. (London) 160:317.Google Scholar
  121. Noble, D., 1972, Conductance mechanisms in excitable cells, Biomembranes 3:427PubMedGoogle Scholar
  122. Noble, D., and Tsien, R. W., 1968, The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres, J. Physiol. (London) 195:185.Google Scholar
  123. Noble, D., and Tsien, R. W., 1969a, Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres, J. Physiol. (London) 200:205.Google Scholar
  124. Noble, D., and Tsien, R. W., 1969b, Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current, J. Physiol. (London) 200:233.Google Scholar
  125. Page, E., and Storm, S. R., 1965, Cat heart muscle in vitro: VIII. Active transport of sodium in papillary muscles, J. Gen. Physiol. 48:957.PubMedGoogle Scholar
  126. Papp, J. G., and Vaughan Williams, E. M., 1969, A comparison of the effects of I.C.I. 50172 and 1-propranolol on intracellular potentials and other features of cardiac function. Br. J. Pharmacol. 37:391.PubMedGoogle Scholar
  127. Pappano, A. J., 1970, Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium, Circ. Res. 27:379.PubMedGoogle Scholar
  128. Peper, K., and Trautwein, W., 1968, A membrane current related to the plateau of the action potential of Purkinje fibers. Pfluegers Arch. 303:108.Google Scholar
  129. Peper, K., and Trautwein, W., 1969, A note on the pacemaker current in Purkinje fibers, Pfluegers Arch. 309:356.Google Scholar
  130. Polimeni, P. I., and Vassalle, M., 1971, On the mechanism of ouabain toxicity in Purkinje and ventricular muscle fibers at rest and during activity, Am. J. Cardiol. 27:622.PubMedGoogle Scholar
  131. Regan, T. J., Harman, M. A., Leban, P. H., Burke, W. M., and Oldewurtel, H. A., 1967, Ventricular arrhythmias and K+ transfer during myocardial ischemia and intervention with procaine amide, insulin, or glucose solution, J. Clin. Invest. 46:1657.PubMedGoogle Scholar
  132. Reuter, H., 1967, The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration, J. Physiol. (London) 192:479.Google Scholar
  133. Reuter, H., 1968, Slow inactivation of currents in cardiac Purkinje fibres, J. Physiol. (London) 197:233.Google Scholar
  134. Rijlant, P., 1936, Méchanisme de l’envahissement de l’oreillette droite du coeur de mammifère par la contraction, C.R. Soc. Biol. (Paris) 121:1361.Google Scholar
  135. Rosen, M. R., Gelband, H., and Hoffman, B. F., 1972, Canine electrocardiographic and cardiac electrophysiologic changes induced by procainamide, Circulation 46:528.PubMedGoogle Scholar
  136. Rosen, M. R., Gelband, H., and Hoffman, B. F., 1973a, Correlation between effects of ouabain on the canine electrocardiogram and transmembrane potentials of isolated Purkinje fibers, Circulation 47:65.Google Scholar
  137. Rosen, M. R., Gelband, H., Merker, C., and Hoffman, B. F., 1973b, Mechanisms of digitalis toxicity. Effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials, Circulation 47:681.PubMedGoogle Scholar
  138. Rosen, M. R., Ilvento, J. P., Gelband, H., and Merker, C., 1974, Effects of verapamil on electrophysiologic properties of canine cardiac Purkinje fibers. J. Pharmacol. Exp. Ther. 189:414.PubMedGoogle Scholar
  139. Rougier, O., Vassort, G., and Stämpfli, R., 1968, Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique, Pfluegers Arch. 301:91.Google Scholar
  140. Rougier, O., Vassort, G., Gamier, D., Gargouil, Y. M., and Coraboeuf, E., 1969, Existence and role of a slow inward current during the frog atrial action potential, Pfluegers Arch. 308:91.Google Scholar
  141. Sasyniuk, B. L, and Kus, T., 1974, Comparison of the effects of lidocaine on electrophysiological properties of normal Purkinje fibers and those surviving acute myocardial infarction, Fed. Proc. 33:476.Google Scholar
  142. Shigenobu, K., and Sperelakis, N., 1972, Calcium current channels induced by catecholamines in chick embryonic hearts whose fast sodium channels are blocked by tetrodotoxin or elevated potassium, Circ. Res. 31:932.PubMedGoogle Scholar
  143. Singh, B. N., 1972, Anti-arrhythmic actions of β-adrenergic receptor antagonists: review of fundamental aspects, N.Z. Med. J. 76:333.PubMedGoogle Scholar
  144. Singh, B. N., and Vaughan Williams, E. M., 1970, A third class of antiarrhythmic action. Effects on atrial and ventricular intracellular potentials, and other pharmacological actions on cardiac muscle, of MJ 1999 and AH 3474, Br. J. Pharmacol. 39:675.PubMedGoogle Scholar
  145. Smith, T. W., Wagner, H., Jr., Markis, J. E., and Young, M., 1972, Studies on the localization of the cardiac glycoside receptor, J. Clin. Invest. 51:1777.PubMedGoogle Scholar
  146. Strauss, H. C., and Bigger, J. T., Jr., 1972, Electrophysiological properties of the rabbit sinoatrial perinodal fibers, Circ. Res. 31:490PubMedGoogle Scholar
  147. Strauss, H. C., Bigger, J. T., Jr., Bassett, A. L., and Hoffman, B. F., 1968, Actions of diphenyl-hydantoin on the electrical properties of isolated rabbit and canine atria, Circ. Res. 23:463.PubMedGoogle Scholar
  148. Strauss, H. C., Bigger, J. T., Jr., and Hoffman, B. F., 1970, Electrophysiological and beta-receptor blocking effects of MJ 1999 on dog and rabbit cardiac tissue. Circ. Res. 26:661.PubMedGoogle Scholar
  149. Takata, M., Moore, J. W., Kao, Y., and Fuhrman, F. A., 1966, Blockage of sodium conductance increase in lobster giant axon by tarichatoxin (tetrodotoxin), J. Gen. Physiol. 49:977.PubMedGoogle Scholar
  150. Tamai, T., and Kagiyama, A., 1968, Studies of cat heart muscle during recovery after prolonged hypothermia: Hyperpolarization of cell membranes and its dependence on the sodium pump with electrogenic characteristics, Circ. Res. 22:423.PubMedGoogle Scholar
  151. Tarr, M., Luckstead, E. F., Jurewicz, P. A., and Haas, H. G., 1973, Effect of propranolol on the fast inward sodium current in frog atrial muscle, J. Pharmacol. Exp. Ther. 184:599.PubMedGoogle Scholar
  152. Temte, J. V., and Davis, L. D., 1967, Effect of calcium concentration on the transmembrane potentials of Purkinje fibers, Circ. Res. 20:32.PubMedGoogle Scholar
  153. Thomas, M., Shulman, G., and Opie, L., 1970, Arteriovenous potassium changes and ventricular arrhythmias after coronary artery occlusion, Cardiovasc. Res. 4:327.PubMedGoogle Scholar
  154. Torii, H., 1962, Electron microscope observations on the SA and AV nodes and the Purkinje fibers of the rabbit. Jpn. Circ. J. 26:39.Google Scholar
  155. Trautwein, W., and Dudel, J., 1958a, Zum Mechanismus der Membranwirkung des Acetyl-cholin an der Herzmuskelfaser, Pfluegers Arch. 266:324.Google Scholar
  156. Trautwein, W., and Dudel, J., 1958b, Hemmende und “erregende” Wirkungen des Acetylcholin am Warmblüterherzen: Zur Frage der spontanen Erregungsbildung, Pfluegers Arch. 266:653.Google Scholar
  157. Trautwein, W., and Kassebaum, D. G., 1961, On the mechanism of spontaneous impulse generation in the pacemaker of the heart, J. Gen. Physiol. 45:317.PubMedGoogle Scholar
  158. Trautwein, W., and Schmidt, R. F., 1960, Zur Membranwirkung des Adrenalins an der Herzmuskelfaser, Pfluegers Arch. 271:715.Google Scholar
  159. Trautwein, W., and Zink, K., 1952, Über Membran- und Aktionspotentiale einzelner Myokard-fasern des Kalt- und Warmblüterherzen, Pfluegers Arch. 256:68.Google Scholar
  160. Trautwein, W., Gottstein, U., and Dudel, J., 1954, Der Aktionsstrom der Myokardfaser im Sauerstoffmangel, Pfluegers Arch. 260:40.Google Scholar
  161. Trautwein, W., Kuffler, S. W., and Edwards, C., 1956, Changes in membrane characteristics of heart muscle during inhibition, J. Gen. Physiol. 40:135.PubMedGoogle Scholar
  162. Tritthart, H., Fleekenstein, B., and Lynker, W., 1969, Der Einfluss von Na+, K+, und Ca++-Ionen auf die Aufstrichsgeschwindigkeit des Aktionspotentials und die maximale Reizfolgefrequenz isolierter, elektrisch gereizter Papillarmuskeln von Meerschweinchen, Pfluegers Arch. 311:R27.Google Scholar
  163. Tritthart, H., Fleckenstein, B., and Fleckenstein, A., 1971, Some fundamental actions of antiarrhythmic drugs on the excitability and contractility of single myocardial fibers, Naunyn Schmiedebergs Arch. Pharmacol. 269:212.PubMedGoogle Scholar
  164. Tsien, R. W., 1973a, Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres, Nature (New Biol.) 245:120.Google Scholar
  165. Tsien, R. W., 1973b, Does adrenaline act by directly modifying the external membrane surface charge of cardiac Purkinje fibres? J. Physiol. (London) 234:37P.Google Scholar
  166. Tsien, R. W., Giles, W., and Greengard, P., 1972, Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibres, Nature (New Biol.) 240:181.Google Scholar
  167. Vassalle, M., 1966, Analysis of cardiac pacemaker potential using a “voltage clamp” technique, Am. J. Physiol. 210:1335.PubMedGoogle Scholar
  168. Vassalle, M., 1970, Electrogenic suppression of automaticity in sheep and dog Purkinje fibers, Circ. Res. 27:361.PubMedGoogle Scholar
  169. Vassalle, M., and Barnabei, O., 1971, Norepinephrine and potassium fluxes in cardiac Purkinje fibers, Pfluegers Arch. 322:287.Google Scholar
  170. Vassalle, M., and Carpentier, R., 1972, Overdrive excitation: Onset of activity following fast drive in cardiac Purkinje fibers exposed to norepinephrine, Pfluegers Arch. 332:198.Google Scholar
  171. Vassalle, M., and Musso, E., 1974, Cardiac Purkinje fibers, automaticity, and digitalis, Fed. Proc. 33:432.Google Scholar
  172. Vassalle, M., Karis, J., and Hoffman, B. F., 1962, Toxic effects of ouabain on Purkinje fibers and ventricular muscle fibers, Am. J. Physiol. 203:433.PubMedGoogle Scholar
  173. Vassalle, M., Vagnini, F. J., Gourin, A., and Stuckey, J. H., 1967a, Suppression and initiation of idioventricular automaticity during vagal stimulation, Am. J. Physiol. 212:1.PubMedGoogle Scholar
  174. Vassalle, M., Caress, D. L., Slovin, A. J., and Stuckey, J. H., 1967b, On the cause of ventricular asystole during vagal stimulation, Circ. Res. 20:228.PubMedGoogle Scholar
  175. Vassalle, M., Greineder, J. K., and Stuckey, J. H., 1973, Role of the sympathetic nervous system in the sinus node resistance to high potassium, Circ. Res. 32:348.PubMedGoogle Scholar
  176. Vaughan Williams, E. M., 1958, The mode of action of quinidine on isolated rabbit atria interpreted from intracellular potential records, Br. J. Pharmacol. 13:276.Google Scholar
  177. Vaughan Williams, E. M., 1970, Classification of anti-arrhythmic drugs, in Symposium on cardiac Arrhythmias (E. Sandre, E. Flensted-Jensen, and K. H. Olesen, eds.), pp. 449–469, A. B. Astra, Södertälje.Google Scholar
  178. Vick, R. L., 1969, Suppression of latent cardiac pacemaker: Relation to slow diastolic depolarization, Am. J. Physiol. 217:451.PubMedGoogle Scholar
  179. Weidmann, S., 1951, Effect of current flow on the membrane potential of cardiac muscle, J. Physiol. (London) 115:227.Google Scholar
  180. Weidmann, S., 1952, The electrical constants of Purkinje fibres, J. Physiol. (London) 118:348.Google Scholar
  181. Weidmann, S., 1955a, The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system, J. Physiol. (London) 127:213.Google Scholar
  182. Weidmann, S., 1955b, Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres, J. Physiol. (London) 129:568.Google Scholar
  183. Weidmann, S., 1956, Electrophysiologic der Herzmuskelfaser, Huber, Bern.Google Scholar
  184. Weidmann, S., 1970, Electrical constants of trabecular muscle from mammalian heart, J. Physiol. (London) 210:1041.Google Scholar
  185. Weidmann, S., 1974, Heart: Electrophysiology, Ann. Rev. Physiol. 36:155.Google Scholar
  186. Weld, F. M., and Bigger, J. T., Jr., 1972, Effect of procaine amide on membrane conductance of cardiac Purkinje fibers, Circulation, Suppl. 2 45:39.Google Scholar
  187. Weld, F. M., and Bigger, J. T., Jr., 1973, Effect of lidocaine on kinetics of the fast sodium current in cardiac Purkinje fibers, Circulation, Suppl. 4 48:108.Google Scholar
  188. Weld, F. M., and Bigger, J. T., Jr., 1974, Effect of lidocaine on diastolic potassium currents of cardiac Purkinje fibers, Fed. Proc. 33:476.Google Scholar
  189. Wiggins, J. R., and Cranefield, P. F., 1974, Inhibition of Ca-dependent action potentials in canine cardiac Purkinje fibers by low levels of Na, Fed. Proc. 33:446.Google Scholar
  190. Wissner, S. B., 1974, The effect of excess lactate upon the excitability of the sheep Purkinje fiber, J. Electrocardiol. 7:17.PubMedGoogle Scholar
  191. Wit, A. L., Cranefield, P. F., and Hoffman, B. F., 1972, Slow conduction and reentry in the ventricular conducting system. II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers, Circ. Res. 30:11.PubMedGoogle Scholar
  192. Wu, C. H., and Narahashi, T., 1972, Mechanism of action of propranolol on squid axon membranes, J. Pharmacol. Exp. Ther. 184:155.Google Scholar
  193. Zipes, D. P., and Mendez, C., 1973, Action of manganese ions and tetrodotoxin on atrioventricular nodal transmembrane potentials in isolated rabbit hearts, Circ. Res. 32:447.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Francis M. Weld
    • 1
  • J. Thomas BiggerJr.
    • 2
  1. 1.Department of Medicine, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.Departments of Medicine and Pharmacology, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations