Skip to main content

Recent Advances in the Central Limit Theorem and Its Weak Invariance Principle for Mixing Sequences of Random Variables (A Survey)

  • Chapter
Dependence in Probability and Statistics

Part of the book series: Progress in Probability and Statistics ((PRPR,volume 11))

Abstract

The purpose of this paper is to describe the progress that has recently been made in the study of the central limit theorem and its weak invariance principle for mixing sequences of random variables and to point out some open problems in this subject.

The work was support in part by a NSF grant DMS-8503016 and by a Taft Grant in aid for travel from the Charles Phelps Taft Memorial Fund, University of Cincinnati.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Berbee, H. C. P., (1979); Random Walks With Stationary Increments and Renewal Theory. Mathematical Centre, Amsterdam.

    MATH  Google Scholar 

  2. Boldrighini, C., De Massi, A., Nogueira, A., Presutti, E., (1985); The Dynamics of a particle interacting with a semi-infinite ideal gas in a Bernoulli flow. Statistical Physics and Dynamical Systems (Progress in Physics) Birkhäuser, p. 153.

    Google Scholar 

  3. Bradley, R. C. (1983), Equivalent Measures of Dependence, J. Multivariate Analysis 13, 167–176.

    Article  MATH  Google Scholar 

  4. Bradley, R. C. (1980), A Remark on the Central Limit Question for Dependent Random Variances, J. Appl. Prob. 17, 94–101.

    Article  MATH  Google Scholar 

  5. Bradley, R. C. (1981 ), A Sufficient Condition for Linear Growth of Variables in a Stationary Random Sequence, Proc. Amer. Math. Soc. 83, 586–589.

    Google Scholar 

  6. Bradley, R. C. (1981 ), Central Limit Theorems under Weak Dependence, J. Multivariate Analysis, 11, 1–16.

    Google Scholar 

  7. Bradley, R. C. (1984 ), On the Central Limit Question under Absolute Regularity (to appear in Ann. of Prob.).

    Google Scholar 

  8. Bradley, R. C. ( 1984 ), The Central Limit Question under a-mixing (to appear in Rocky Mtn. J. Math.).

    Google Scholar 

  9. Bradley, R. C. (1983 ), Information Regularity and Central Limit Question, Rocky Mtn. J. Math., 13, 77–97.

    Google Scholar 

  10. Bradley, R. C., Bryc, W. (1985), Multilinear Forms and Measures of Dependence Between Random Variables, J. Multivariate Analysis, 16, 335–367.

    Article  MATH  MathSciNet  Google Scholar 

  11. Bradley, R. C. (1982), Counterexamples to the Central Limit Theorem Under Strong Mixing Conditions, Colloquia Mathematica Soc. Jénos Bolyai. 36 Limit Theorems in Probability and Statistics, Veszprém (Hungary).

    Google Scholar 

  12. Bradley, R. C. (1985), The Basic Properties of Strong Mixing Conditions, (to appear in Dependence in Probability and Statistics, Birkhauser).

    Google Scholar 

  13. Bradley, R. C., Peligrad, M. (1985), Invariance Principles Under A Two-Part Mixing Assumption. Preprint.

    Google Scholar 

  14. Bryc, W. (1985), Central Limit Theorem for 4-mixing Random Sequences Under Lindeberg-type Condition, (preprint).

    Google Scholar 

  15. Cogburn, R. (1960), Asymptotic Properties of Stationary Sequences, Univ. Calif. Publ. Statist. 3, 99–146.

    Google Scholar 

  16. Davydov, Y. A. (1968), Convergence of Distributions Generated by Stationary Stochastic Processes., Teor. Probability Appl. 13, 691–696.

    Article  MATH  Google Scholar 

  17. Davydov, Y. A. (1969), On the Strong Mixing Property for Markov Chains with a Countable Number of States, Soviet Math. Doki. 10, 825–827.

    MATH  Google Scholar 

  18. Davydov, Y. A. (1973), Mixing Conditions for Markov Chains, Theory Probab. Appl. 18, 312–328.

    MATH  Google Scholar 

  19. Dehling, H., Denker, M., Philipp, W., (1984), Central Limit Theorems for Mixing Sequences of Random Variables under Minimal Conditions (to appear in Ann. Probability).

    Google Scholar 

  20. Dehling, H. and Philipp, W. (1982), Almost Sure Invariance Principle for Weakly Dependent Vector-Valued Random Variables, Ann. Prob. 10, 689–701.

    Article  MATH  MathSciNet  Google Scholar 

  21. Denker, M. (1978), A Note on the Central Limit Theorem for Strongly Mixing Random Variables. Preprint.

    Google Scholar 

  22. Denker, M. (1979), A Limit Theorem for Mixing Stationary Processes and its Applications. Preprint.

    Google Scholar 

  23. Denker, M. (1985), Uniform Integrability and the Central Limit Theorem (to appear in Dependence in Probability and Statistics. Birkhäuser).

    Google Scholar 

  24. Dvoretzky, A. (1972), Asymptotic Normality for Sums of Dependent Random Variables, Proc. Sixth Berkeley Sympos. Math. Stat. Prob., Vol. 2, 515–535.

    Google Scholar 

  25. Eberlein, E. (1984), On Strong Invariance Principle Under Dependence Assumptions, (to appear in Ann. Probability).

    Google Scholar 

  26. Gastwirth, J. L., Rubin, H. (1975), The Asymptotic Distribution Theory of the Empiric c.d.f. for Mixing Stochastic Processes, Ann. Statist., 3, 809–824.

    Article  MATH  MathSciNet  Google Scholar 

  27. Hall, P., Heyde, C. C. (1980), Martingale Limit Theory and Its Applications, Academic Press, New York.

    Google Scholar 

  28. Hahn, M. G., Kuelbs, J. (1985), Asymptotic Normality of Trimmed Sums of + Mixing Random Variables. Preprint.

    Google Scholar 

  29. Herrndorf, N. (1983 ), The Invariance Principle for +-mixing Sequences, Z. Wahrsch. Verw. Gebiete 63, 1, 97–109.

    Google Scholar 

  30. Herrndorf, N., (1983 ), Stationary Strongly Mixing Sequences Not Satisfying the Central Limit Theorem, Annals Prob. 11, 809–813.

    Google Scholar 

  31. Herrndorf, N., ( 1983 ), A Functional Central Limit Theorem for Strongly Mixing Sequences of Random Variables, (Z. Wahrsch. verw. Gebiete, submitted).

    Google Scholar 

  32. Herrndorf, N., (1984 ), A Functional Central Limit Theorem for P-Mixing Sequences, J. of Multiv. Anal. 15, 141–146.

    Google Scholar 

  33. Herrndorf, N., (1984 ), A Functional Central Limit Theorem for Weakly Dependent Sequences of Random Variables, Ann. of Prob., 12, 141–153.

    Google Scholar 

  34. Hoffman-Jorgensen, J., (1974), Sums of Independent Banach Space Valued Random Variables, Studia Math. 52, 159–186.

    MathSciNet  Google Scholar 

  35. Ibragimov, I. A., (1962), Some Limit Theorem for Stationary Processes, Theory Prob. Appl. 7, 349–382.

    Google Scholar 

  36. Ibragimov, I. A., (1975), A Note on the Central Limit Theorem for Dependent Random Variables, Theory Prob. Appl. 20, 135–141.

    MATH  Google Scholar 

  37. Ibragimov, I. A., Linnik, Y. V. (1971), Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.

    MATH  Google Scholar 

  38. Ibragimov, I. A., Rozanov, Y. A., (1978), Gaussian Random Processes, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  39. Iosifescu, M. (1980), Recent Advances in Mixing Sequences of Random Variables. Third International Summer School on Probability Theory and Mathematical Statistics, Varna. 1978.

    Google Scholar 

  40. Iosifescu, M., Teodorescu, R. (1969), Random Processes and Learning, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  41. Jakubowski, A. (1985), A Note on the Invariance Principle for Stationary 4-Mixing Sequences. Tightness via Stopping Times. Preprint.

    Google Scholar 

  42. Kesten, H., O’Brien, G. L. (1976), Examples of Mixing Sequences, Duke Math. J. 43, 405–415.

    MATH  MathSciNet  Google Scholar 

  43. Kolmogorov, A. N., Rozanov, Y. A. (1960), On Strong Mixing Conditions for Stationary Gaussian Processes. Theory Probab. Appl. 5, 204–208.

    MathSciNet  Google Scholar 

  44. Lai, T. L. (1977), Convergence Rates and r-Quick Version of the Strong Law for Stationary Mixing Sequences, Ann. Prob. 5, 693–706.

    Article  MATH  Google Scholar 

  45. Lai, T. L., Robbins, H. (1978), A Class of Dependent Random Variables and Their Maxima, Z. Wahrsch. Verw. Gebiete 42, 89–111.

    Article  MATH  MathSciNet  Google Scholar 

  46. McLeish, D. L. (1975), Invariance Principles for Dependent Variables, Z. Wahrsch. verw. Gebiete 32, 165–178.

    Article  MATH  MathSciNet  Google Scholar 

  47. McLeish, D. L. (1977), On the Invariance Principles for Nonstationary Mixingales, Ann. Prob. 5, 616–621.

    Article  MATH  MathSciNet  Google Scholar 

  48. Moricz, F. (1982), A General Moment Inequality for the Maximum of Partial Sums of Single Series, Acta Sci. Math. 44, 67–75.

    MATH  MathSciNet  Google Scholar 

  49. Moricz, F., Serfling, R. J. and Stout, W. (1982), Moment and Probability Bounds with Quasi-Superadditive Structure for the Maximum Partial Sum, Ann. Prob. 10, 1032–1040.

    Article  MATH  MathSciNet  Google Scholar 

  50. Nahapetian, B. S. (1984), On Limit Theorem for Dependent Random Variables. The Sixth International Symposium on Information Theory. September 18–22, 1984, Tashkent.

    Google Scholar 

  51. Oodaira, H. and Yoshihara, K. (1971), The Law of the iterated Logarithm for Stationary Processes Satisfying Mixing Conditions, Kodai Math. Sem. Rep. 23, 311–334.

    Article  MATH  MathSciNet  Google Scholar 

  52. Oodaira, H. and Yoshihara, K. (1972), Functional Central Limit Theorems for Strictly Stationary Processes Satisfying the Strong Mixing Condition, Kodai Math. Sem. Rep. 24, 259–269.

    Article  MATH  MathSciNet  Google Scholar 

  53. Peligrad, M. (1981 ), An Invariance Principle for Dependent Random Variables, Z. Wahrsch. verw. Gebiete 57, 495–507.

    Google Scholar 

  54. Peligrad, M. ( 1981 ), A Maximal Inequality for 4-Mixing Sequences, Center of Math. Statistics Notes, Bucharest.

    Google Scholar 

  55. Peligrad, M. (1982), Invariance Principles for Mixing Sequences of Random Variables, The Ann. of Prob. 10, 4, 968–981.

    Article  MATH  MathSciNet  Google Scholar 

  56. Peligrad, M. (1983), A Note on Two Measures of Dependence and Mixing Sequences, Adv. Appl. Prob. 15, 461–464.

    Article  MATH  MathSciNet  Google Scholar 

  57. Peligrad, M. (1984 ), An Invariance Principle for 4-Mixing Sequences, (to appear in Ann. of Prob.).

    Google Scholar 

  58. Peligrad, M. (1984 ), Invariance Principles under Weak Dependence (to appear in J. of Multivariate Analysis).

    Google Scholar 

  59. Philipp, W. (1979), An Almost Sure Invariance Principle for Sums of B-Valued Random Variables, Lecture Notes In Math. 709, 171–193, Springer-Verlag, New York.

    Google Scholar 

  60. Philipp, W. (1980), Weak and Lu-Invariance Principle for Sums of B-Valued Random Variables, The Ann. of Prob. 8, 1, 68–82.

    Article  MathSciNet  Google Scholar 

  61. Philipp, W., Stout, W. F. (1975), Almost Sure Invariance Principles for Sums of Weakly Dependent Random Variables, Amer. Math. Soc. Memoir, No. 161.

    Google Scholar 

  62. Philipp, W., Webb, G. R. (1973), An Invariance Principle for Mixing Sequences of Random Variables, Z. Warhsch. verw. Gebiete 25, 223–237.

    Article  MATH  MathSciNet  Google Scholar 

  63. Rosenblatt, M. (1956), A Central Limit Theorem and a Strong Mixing Condition, Proc. Nat. Acad. Sci. USA 42, 43–47.

    Article  MATH  MathSciNet  Google Scholar 

  64. Rosenblatt, M. (1971), Markov Processes, Structure and Asymptotic Behavior, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  65. SamAr, J. D 19x4), ectorsgeitn stationarry Rows, Ann. robar12, rrays of an om Vectors w 390–426.

    Google Scholar 

  66. Serfling, R. J. (1968), Contributions to Central Limit Theory for Dependent Variables, Ann. Math. Stat. 39, 1158–1175.

    Google Scholar 

  67. Shields, P., (1973), The Theory of Bernoulli Shifts. University of Chicago Press, Chicago.

    MATH  Google Scholar 

  68. Simons, G., Stout, W. (1978), A Weak Invariance Principle with Applications to Domains of Attraction, Ann. Prob. 6, 294–315.

    Article  MATH  MathSciNet  Google Scholar 

  69. Volkonskii, V. A., Rozanov, Y. A. (1959), Some Limit Theorems for Random Functions I. Theory Prob. Appl. 4, 178–197.

    MathSciNet  Google Scholar 

  70. Yokoyama, R. (1980), Moment Bounds for Stationary Mixing Sequences, Z. Wahrsch. verw. Gebiete 52, 45–57.

    Article  MATH  MathSciNet  Google Scholar 

  71. Yoshihara, K. (1978), Probability Inequalities for Sums of Absolutely Regular Processes and Their Applications, Z. Wahrsch. verw. Gebiete 43, 319–329.

    Article  MATH  MathSciNet  Google Scholar 

  72. Withers, C. L. (1981), Central Limit Theorems for Dependent Variables I, Z. Wahrsch. verw. Gebiete 57, 509–534.

    Article  MATH  MathSciNet  Google Scholar 

  73. Withers, C. L. (1983), Corringendum to Central Limit Theorems for Dependent Random Variables, Z. Wahrsch. verw. Gebiete, 63, 555.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peligrad, M. (1986). Recent Advances in the Central Limit Theorem and Its Weak Invariance Principle for Mixing Sequences of Random Variables (A Survey). In: Eberlein, E., Taqqu, M.S. (eds) Dependence in Probability and Statistics. Progress in Probability and Statistics, vol 11. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-8162-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8162-8_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-8163-5

  • Online ISBN: 978-1-4615-8162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics