Advertisement

Vasopressin pp 257-274 | Cite as

Electrophysiological Actions of Vasopressin in Extrahypothalamic Regions of the Central Nervous System

  • M. Joëls

Abstract

During the 1960s, De Wied and colleagues (De Wied, 1965; De Wied and Bohus, 1966) showed that the impaired conditioned avoidance behavior of hypophysec-tomized rats could be normalized if these animals were treated with a vasopressin (VP)-enriched pituitary extract (pitressin). This finding provided the first evidence that VP is implicated in centrally regulated processes, in addition to its role in the periphery as a hormone acting on blood pressure and water metabolism. Since then, numerous studies have further delineated the role of VP in central integrative processes, including learning and memory processes (reviewed by De Wied, 1984; see also Chapter 14, this volume), central cardiovascular regulation (reviewed by Doris, 1984; see also Chapter 10, this volume), and temperature regulation (reviewed by Veale et al., 1981). Important in understanding how VP can exert these central influences was the immunocytochemical demonstration of a VP-containing fiber network in the central nervous system (CNS) (Buijs, 1978; Buijs et al., 1978; Sofroniew and Weindl, 1978; see Chapter 2, this volume). The central VP-containing fiber network provides the anatomical substrate for distribution of VP from its sites of synthesis in the hypothalamus to extrahypothalamic areas in the CNS. In some of the extrahypothalamic regions, VP appeared to be localized in synapticlike terminals (Buijs and Swaab, 1979). Evidence for synaptic release of VP from terminal networks was inferred from in vitro experiments showing Ca2+-dependent release of VP from brain slices with a depolarizing stimulus (Buijs and Van Heerikhuize, 1982). It is conceivable that after release of the peptide in the terminal zone, changes in the local neuronal activity occur. Electrophysiological studies were initiated to determine whether VP can indeed alter the neuronal activity in these target areas for the peptide.

Keywords

Pyramidal Neuron Diabetes Insipidus Excitatory Amino Acid Arginine Vasopressin Paradoxical Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audigier, S., and Barberis, C., 1985, Pharmocological characterization of two specific binding sites for neurohypophyseal hormones in hippocampal synaptic plasma membranes of the rat, The Embo Journal 4: 1407–1412.PubMedGoogle Scholar
  2. Backman, S. B., and Henry, J. L., 1984, Effects of oxytocin and vasopressin on thoracic sympathetic preganglionic neurons in the cat, Brain Res. Bull. 13: 679–684.PubMedCrossRefGoogle Scholar
  3. Biegon, A., Terlou, M., Voorhuis, T. D., and de Kloet, E. R., 1984, Arginine vasopressin binding sites in rat brain, Neurosci. Lett. 44: 239–244.CrossRefGoogle Scholar
  4. Bohus, B., Ader, R., and De Wied, D., 1972, Effect of vasopressin on active and passive avoidance behavior, Hormone Behav. 3: 191–197.CrossRefGoogle Scholar
  5. Brinton, R. E., Gee, K. W., Wamsley, J. K., Davis, T. P., and Yamamura, H. I., 1984, Regional distribution of putative vasopressin receptors in rat brain and pituitary by quantitative autoradiog-raphy, Proc. Natl. Acad. Sci. U.S.A. 81: 7248–7252.PubMedCrossRefGoogle Scholar
  6. Brinton, R. E., and McEwen, B. S., 1986, Vasopressin neuromodulation in the hippocampus: Cal-cium/calmodulin or protein Kinase C?, in: Sixteenth Annual Meeting of the Society of Neuroscience.Google Scholar
  7. Burbach, J. P. H., Kovacs, G. L., De Wied, D., van Nispen, J. W., and Greven, H. M., 1983, A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide, Science 221: 1310–1312.PubMedCrossRefGoogle Scholar
  8. Burns, B. Delisle, Ebenezer, I. S., and Webb, A. C., 1984, The effects of arginine vasopressin upon the electrical activity of the cerebral cortices of rats anaesthetized with urethane, J. Physiol. (Lond.) 349: 25P.Google Scholar
  9. Buijs, R. M., 1978, Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat, Cell Tissue Res. 192: 423–435.PubMedCrossRefGoogle Scholar
  10. Buijs, R. M., and Swaab, D. F., 1979, Immuno-electron microscopic demonstration of vasopressin and oxytocin synapses in the limbic system of the rat, Cell Tissue Res. 204: 355–365.PubMedCrossRefGoogle Scholar
  11. Buijs, R. M., Swaab, D. F., Dogterom, J., and van Leeuwen, F. W., 1978, Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat, Cell Tissue Res. 186: 423–433.PubMedCrossRefGoogle Scholar
  12. Church, A. G, 1983, Vasopressin potentiates the stimulation of cyclic AMP accumulation by norepi-nephrine, Peptides 4: 261–263.PubMedCrossRefGoogle Scholar
  13. Danguir, J., 1983, Sleep deficits in rats with hereditary diabetes insipidus, Nature (Lond.) 304: 163–164.CrossRefGoogle Scholar
  14. De Kloet, E. R., Rotteveel, F., Voorhuis, T. A. M., and Terlou, M., 1985, Topography of binding sites for neurohypophyseal hormones in rat brain, Eur. J. Pharmacol. 110: 113–119.PubMedCrossRefGoogle Scholar
  15. De Vries, G. J., Buijs, R. M., Van Leeuwen, F. W., Caffe, A. R., and Swaab, D. F., 1985, The vaso-pressinergic innervation of the brain in normal and castrated rats, J. Comp. Neurol. 233: 236–254.CrossRefGoogle Scholar
  16. De Wied, D., 1965, The influence of the posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats, Int. J. Neuropharmacol. 4: 157–167.CrossRefGoogle Scholar
  17. De Wied, D., 1984, Neurohypophyseal hormone influences on learning and memory processes, in: Neurobiology of Learning and Memory (G. Lynch, J. L. Mcgaugh, and N. M Weinberger, eds.), pp. 289–312, Guilford, New York.Google Scholar
  18. De Wied, D., and Bonus, B., 1966, Long-term and short-term effects on retention of a conditioned avoidance response in rats by treatment with long acting pitressin and α-MSH, Nature (Lond.) 12: 1484–1486.CrossRefGoogle Scholar
  19. De Wied, D., Greven, H. M., Lande, S., and Witter, A., 1972, Dissociation of the behavioral and endocrine effects of lysine vasopressin by tryptic digestion, Br. J. Pharmacol. 45: 118–121.PubMedGoogle Scholar
  20. Dingledine, R., 1984, Brain Slices, Plenum, New York.Google Scholar
  21. Doris, P. A., 1984, Vasopressin and central integrative processes, Neuroendocrinology 38: 75–85.PubMedCrossRefGoogle Scholar
  22. Dreifuss, J. J., and Miihlethaler, M., 1981, Vasopressin-induced modulated firing rate in hippocampal slices, J. Physiol. (Lond.) 318:18P.Google Scholar
  23. Dreifuss, J. J., and Miihlethaler, M., 1981, Vasopressin excites neurones in hippocampal slices from Brattleboro rats, J. Physiol. (London) 327:45P.Google Scholar
  24. Gilbey, M. P., Coote, J. H., Fleetwood-Walker, S., and Peterson, D. F., 1982, The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurones, Brain Res. 251: 283–290.PubMedCrossRefGoogle Scholar
  25. Gogolak, H., Stumph, C. H., Petsche, H., and Sterc, J., 1968, The firing pattern of septal neurons and the form of the hippocampal theta wave, Brain Res. 7: 201–207.PubMedCrossRefGoogle Scholar
  26. Huwyler, T., and Felix, D., 1980, Angiotensin II-sensitive neurons in septal areas of the rat, Brain Res. 195: 187–195.PubMedCrossRefGoogle Scholar
  27. Joels, M., and Urban, I. J. A., 1982a, The effect of microiontophoretically applied vasopressin and oxytocin on single neurons in the septum and dorsal hippocampus of the rat, Neurosci. Lett. 33: 79–84.PubMedCrossRefGoogle Scholar
  28. Joels, M., and Urban, I. J. A., 1982b, Action of microiontophoretically applied oxytocin, vasopressin and desglycinamide-vasopressin on single neurons in the lateral septum and dorsal hippocampus of the rat, Pharm. Wkblad. Sci. 4: 161–162.Google Scholar
  29. Joëls, M., and Urban, I. J. A., 1984a, Amino acid neurotransmission between fimbria-fornix fibers and neurons in the lateral septum of the rat: A microiontophoretic study, Exp. Neurol. 84: 126–139.PubMedCrossRefGoogle Scholar
  30. Joels, M., and Urban, I. J. A., 1984b, Arginine8-vasopressin enhances the responses of lateral septal neurones in the rat to excitatory amino acids and fimbria-fornix stimuli, Brain Res. 311: 201–209.PubMedCrossRefGoogle Scholar
  31. Joels, M., and Urban, I. J. A., 1985, Monoamine-induced responses in lateral septal neurons: Influence of iontophoretically applied vasopressin, Brain Res. 344: 120–126.PubMedCrossRefGoogle Scholar
  32. Kerkut, G. A., and Wheal, H. V., (eds.), 1981, Electrophysiology of Isolated Mammalian CNS Preparations, Academic, New York.Google Scholar
  33. Kovacs, G. L., Bohus, B., and Versteeg, D. H. G., 1979a, Facilitation of memory consolidation by vasopressin: Mediation by terminals of the dorsal noradrenergic bundle? Brain Res. 172: 73–85.PubMedCrossRefGoogle Scholar
  34. Kovacs, G. L., Bohus, B., Versteeg, D. H. G., de Kloet, E. R., and De Wied, D., 1979b, Effect of oxytocin and vasopressin on memory consolidation: Sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures, Brain Res. 175: 303–314.PubMedCrossRefGoogle Scholar
  35. Ma, R. C., and Dun, N. J., 1985, Vasopressin depolarizes lateral horn cells of the neonatal rat spinal cord in vitro, Brain Res. 348: 36–43.PubMedCrossRefGoogle Scholar
  36. Marchand, J. E., and Hagino, N., 1982, Effect of iontophoresis of vasopressin on lateral septal neurons. Exp. Neurol. 78: 790–795.PubMedCrossRefGoogle Scholar
  37. Mizuno, Y., Oomura, Y., Hori, N., and Carpenter, D. O., 1984, Action of vasopressin on CA1 pyramidal neurons in rat hippocampal slices, Brain Res. 309: 241–246.PubMedCrossRefGoogle Scholar
  38. Miihlethaler, M., Dreifuss, J. J., and Gähwiler, B. H., 1982, Vasopressin excites hippocampal neurones, Nature (Lond.) 296: 749–751.CrossRefGoogle Scholar
  39. Miihlethaler, M., Sawyer, W. H., Manning, M. M., and Dreifuss, J. J., 1983, Characterization of a uterine-type oxytocin receptor in the rat hippocampus, Proc. Natl, Acad. Sci. U.S.A. 80: 6713–6717.CrossRefGoogle Scholar
  40. Mühlethaler, M., Charpak, S., and Dreifuss, J. J., 1984, Contrasting effects of neurohypophyseal pep-tides on pyramidal and non-pyramidal neurones in the rat hippocampus, Brain Res. 308: 97–107.PubMedCrossRefGoogle Scholar
  41. Nicoll, R. A., and Barker, J. L., 1971, The pharmacology of recurrent inhibition in the supraoptic neurosecretory system, Brain Res. 35: 501–511.PubMedCrossRefGoogle Scholar
  42. Olpe, H. R., and Baltzer, V., 1981, Vasopressin activates noradrenergic neurons in the rat locus coe-ruleus: A microiontophoretic investigation, Eur. J. Pharmacol. 73: 377–378.CrossRefGoogle Scholar
  43. Peters, S., and Kreulen, D. L., 1985, Vasopressin-mediated slow EPSPs in a mammalian sympathetic ganglion, Brain Res. 339: 126–129.PubMedCrossRefGoogle Scholar
  44. Petsche, H., Stumph, C. H., and Gogolak, G., 1962, The significance of the rabbits septum as a relay station between the midbrain and hippocampus. I. The control of hippocampal arousal activity by septum cells, EEG Clin. Neurophysiol. 14: 201–211.CrossRefGoogle Scholar
  45. Raggenbass, M., Wuarin, J. P., Gähwiler, B. H., and Dreifuss, J. J., 1985, Opposing effects of oxytocin and a μ-receptor agonistic opioid peptide on the same class of non-pyramidal neurones in rat hippocampus, Brain Res. 344: 392–396.PubMedCrossRefGoogle Scholar
  46. Sawyer, W. H., Acosta, M., Balaspiri, L., Judd, J., and Manning, M., 1974, Structural changes in the arginine vasopressin molecule that enhance antidiuretic activity and specificity, Endocrinology 94: 1106–1115.PubMedCrossRefGoogle Scholar
  47. Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation, Brain Res. 85: 423–436.PubMedCrossRefGoogle Scholar
  48. Schwartzkroin, P. A., and Mathers, L. H., 1978, Physiological and morphological identification of a non pyramidal hippocampal cell type, Brain Res. 157: 1–10.PubMedCrossRefGoogle Scholar
  49. Smock, T., and Topple, A., 1985, Action of vasopressin on neurons and microvessels in the rat hippocampal slice, in: Fifteenth Annual Meeting of the Society of Neuroscience.Google Scholar
  50. Sofroniew, M. V., and Weindl, A., 1978, Projections from the parvocellular vasopressin-and neuro-physin-containing neurons of the suprachiasmatic nucleus, Am. J. Anat. 153: 391–430.PubMedCrossRefGoogle Scholar
  51. Stone, T. W., 1985, Microiontophoresis and pressure ejection, IBRO Handbook Series: Methods in the Neurosciences, Vol. 8, Wiley, New York.Google Scholar
  52. Suzue, T., Yanaihara, N., and Otsuka, M., 1981, Actions of vasopressin, gastrin releasing peptide and other peptides on neurons of newborn rat spinal cord in vitro, Neurosci. Lett. 26: 137–142.PubMedCrossRefGoogle Scholar
  53. Tanaka, M., de Kloet, E. R., De Wied, D., and Versteeg, D. H. G., 1977, Arginine vasopressin affects catecholamine metabolism in specific brain nuclei, Life Sci. 20: 1799–1808.PubMedCrossRefGoogle Scholar
  54. Tiberiis, B. E., McLennan, H., and Wilson, N., 1983, Neurohypophyseal peptides and the hippocampus. IL Excitation of rat hippocampal neurones by oxytocin and vasopressin applied in vitro, Neuropeptides 4: 73–86.PubMedCrossRefGoogle Scholar
  55. Urban, L J. A., 1981, Intraseptal administration of vasopressin and oxytocin affects hippocampal electroencephalogram in rats, Exp Neurol. 74: 131–147.PubMedCrossRefGoogle Scholar
  56. Urban, L, and De Wied, D., 1975, Inferior quality of RSA during paradoxical sleep in rats with hereditary diabetes insipidus, Brain Res. 97: 362–366.PubMedCrossRefGoogle Scholar
  57. Urban, L, and De Wied, D., 1978, Neuropeptides: Effects on paradoxical sleep and theta rhythm in rats, Pharmacol. Biochem. Behav. 8: 51–59.PubMedCrossRefGoogle Scholar
  58. Urban, I. J. A., and De Wied, D., 1986, Effect of vasopressin, oxytocin and peptides derived from these hormones on field potential induced in lateral septum of rats by stimulation of the fimbria-fornix, Neuropeptides 7: 41–50.PubMedCrossRefGoogle Scholar
  59. Urban, I. J. A., and Joëls, M., 1983, Long-term enhancement of excitatory amino acid transmission by arginine8-vasopressin (AVP): a function of AVP in lateral septum of rats?, in: Ninth Annual Meeting of the Society of Neuroscience. (Abst. 9.7.)Google Scholar
  60. Valtin, H., and Schroeder, H. A., 1964, Familial hypothalamic diabetes insipidus in rats Brattleboro strain, Am. J. Physiol. 206: 425–430.PubMedGoogle Scholar
  61. Van Leeuwen, F. W., and Wolters, P., 1983, Light microscopic autoradiographic localization of [3H]arginine-vasopressin binding sites in the rat brain and kidney, Neurosci. Lett. 41: 61–66.PubMedCrossRefGoogle Scholar
  62. Veale, W. L., Kasting, N. W., and Cooper, K. E., 1981, Arginine vasopressin and endogenous anti-pyresis: Evidence and significance, Fed. Proc. 40: 2750–2753.PubMedGoogle Scholar
  63. Versteeg, D. H. G., 1982, Neurohypophyseal hormones and brain neurochemistry, Pharmacol. Ther. 19: 297–325.PubMedCrossRefGoogle Scholar
  64. Vincent, J. D., and Arnauld, E., 1975, Vasopressin as a transmitter in the central nervous system: Some evidence for the synaptic neurosecretory system, Prog. Brain Res. 42: 57–66.PubMedCrossRefGoogle Scholar
  65. Vinogradova, D. S., Brazhnik, E. S., Karanov, A. M., and Zhadina, S. D., 1980, Neuronal activity of the septum following various types of deafferentation, Brain Res. 187: 353–368.PubMedCrossRefGoogle Scholar
  66. Walaas, L, and Fonnum, F., 1980, Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain, Neuroscience 5: 1691–1698.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • M. Joëls
    • 1
  1. 1.Rudolf Magnus Institute for PharmacologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations