Vasopressin pp 211-256 | Cite as

Electrophysiology of the Central Vasopressin System

  • J. B. Wakerley

Abstract

The goal of the electrophysiologist working on the central vasopressin (VP) system is to provide a complete description of all electrical events intervening between arrival of synaptic transmitters or other agents on the membrane receptors of the VP-secreting neurosecretory cells and of activation of the exocytotic process leading to VP release from the neurohypophysial terminals. On a wider scale, the electrophysiologist may endeavor to describe the generation and integration of nerve impulses within the various afferent pathways impinging upon VP cells. Armed with such information, the electrophysiologist can then hope to provide a complete explanation of how stimuli that influence VP release are integrated and processed to bring about a particular level and pattern of hormonal output. As will become apparent, the past decade has seen considerable advance toward the attainment of this objective.

Keywords

Firing Pattern Supraoptic Nucleus Magnocellular Nucleus Hypothalamic Slice Antidromic Action Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., and Ogata, N., 1982, Ionic mechanism for the osmotically-induced depolarization in neurones of the guinea-pig supraoptic nucleus in vitro, J. Physiol. (Lond.) 327: 157–171Google Scholar
  2. Abe, H., Inoue, M., Matsuo, T., and Ogata, N., 1983, The effects of vasopressin on electrical activity in the guinea-pig supraoptic nucleus in vitro, J. Physiol. (Lond.) 337: 665–685.Google Scholar
  3. Akaishi, T., and Ellendorff, F., 1983, Electrical properties of paraventricular neurosecretory neurones with and without recurrent inhibition, Brain Res. 262: 151–154.PubMedCrossRefGoogle Scholar
  4. Akaishi, T., Negoro, H., and Kobayasi, S., 1980, Responses of paraventricular and supraoptic units to angiotensin II, Sar(l)-Ile(8)-angiotensin II and hypertonic NaCl administered into the cerebral ventricle, Brain Res. 188: 499–511.PubMedCrossRefGoogle Scholar
  5. Andrew, R. D., and Dudek, F. E., 1984a, Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells, J. Neurophysiol. 51: 552–566.PubMedGoogle Scholar
  6. Andrew, R. D., and Dudek, F. E., 1984b, Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus, J. Physiol. (Lond.) 353: 171–185.Google Scholar
  7. Andrew, R. D., Mac Vicar, B. A., Dudek, F. E., and Hatton, G. I., 1981, Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus, Science 211: 1187–1189.PubMedCrossRefGoogle Scholar
  8. Armstrong, W. E., and Sladek, C. D., 1982, Spontaneous phasic firing in supraoptic neurons recorded from hypothalamo-neurohypophysial expiants in vitro, Neuroendocrinology 34: 405–409.PubMedCrossRefGoogle Scholar
  9. Armstrong, W. E., Warach, S., Hatton, G. I., and McNeill, T. H., 1980, Subnuclei in the rat hypotha-lamic paraventricular nucleus: A cytoarchitectural, horseradish peroxidase and immunocyto-chemical analysis, Neuroscience 5: 1931–1958.PubMedCrossRefGoogle Scholar
  10. Arnauld, E., and DuPont, J., 1982, Vasopressin release and firing of supraoptic neurosecretory neurones during drinking in the dehydrated monkey, Pflugers Arch. 394: 195–201.PubMedCrossRefGoogle Scholar
  11. Arnauld, E., Dufy, B., and Vincent, J. D., 1975, Hypothalamic supraoptic neurones: Rates and patterns of action potential firing during water deprivation in the unanesthetized monkey, Brain Res. 100: 315–325.PubMedCrossRefGoogle Scholar
  12. Arnauld, E., Cirino, M., Layton, B. S., and Renaud, L. P., 1983, Contrasting actions of amino acids, acetylcholine, norradrenaline and leucine enkephalin on the excitability of supraoptic vasopressin secreting neurons, Neuroendocrinology 36: 187–196.PubMedCrossRefGoogle Scholar
  13. Baertschi, A. J., and Dreifuss, J. J., 1979, The antidromic compound action potential of the hypothalamo-neurohypophysial tract, a tool for assessing posterior pituitary activity in vivo, Brain Res. 171: 437–451.PubMedCrossRefGoogle Scholar
  14. Banks, D., and Harris, M. G, 1984, Lesions of the locus coeruleus abolish baroreceptor-induced depression of supraoptic neurons in the rat, J. Physiol. (Lond.) 355: 383–398.Google Scholar
  15. Bargmann, W., and Scharrer, E., 1951, The site of origin of the hormones of the posterior pituitary, Am. Sci. 39: 255–259.Google Scholar
  16. Barker, J. L., Crayton, J. W., and Nicoll, R. A., 1971, Antidromic and orthodromic responses of paraventricular and supraoptic neurosecretory cells, Brain Res. 33: 353–366.PubMedCrossRefGoogle Scholar
  17. Baumgarten, H. G., Bjorklund, A., Holstein, A. F., and Nobin, A., 1972, Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary, Z. Zellforsch. 126: 483–517.PubMedCrossRefGoogle Scholar
  18. Bennett, C. T., 1973, Activity of somosensitive neurones: Plasma osmotic pressure thresholds, Physiol. Behav. 11: 403–406.PubMedCrossRefGoogle Scholar
  19. Bicknell, R. J., and Leng, G., 1982, Endogenous opiates regulate oxytocin but not vasopressin secretion from the neurohypophysis, Nature (Lond.) 298: 161–162.CrossRefGoogle Scholar
  20. Bicknell, R. J., Brown, D., Chapman, C., Hancock, P. D., and Leng, G., 1984, Reversible fatigue of stimulus-secretion coupling in the rat neurohypophysis, J. Physiol. (Lond.) 348: 601–613.Google Scholar
  21. Bioulac, B., Gaffori, O., Harris, M. C., and Vincent, J. D., 1978, Effects of acetylcholine, sodium glutamate and GABA on the discharge of supraoptic neurons in the rat, Brain Res. 154: 159–162.PubMedCrossRefGoogle Scholar
  22. Bjorklund, A., Moore, R. Y., Nobin, A., and Stenevi, U., 1973, The organization of tubero-hypophy-seal and reticulo-infundibular catecholamine neuron system in the rat brain, Brain Res. 51: 171–191.PubMedCrossRefGoogle Scholar
  23. Blume, H., Pittman, Q. J., and Renaud, L. P., 1978, Electrophysiological indications of a “vasopres-sinergic” innervation of the median eminence, Brain Res. 155: 153–158.PubMedCrossRefGoogle Scholar
  24. Bourque, C. W., and Renaud, L. P., 1984, Activity patterns and osmosensitivity of rat supraoptic neurones in perfused hypothalamic expiants, J. Physiol. (Lond.) 349: 631–642.Google Scholar
  25. Bourque, C. W., and Renaud, L. P., 1985a, Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro, J. Physiol. (Lond.) 363: 429–440.Google Scholar
  26. Bourque, C. W., and Renaud, L. P., 1985b, Calcium-dependent action potentials in rat supraoptic neurosecretory neurons recorded in vitro, J. Physiol. (Lond.) 363: 419–428.Google Scholar
  27. Brimble, M. J., and Dyball, R. E. J., 1977, Characterization of the responses of oxytocin-and vaso-pressin-secreting neurones in the supraoptic nucleus to osmotic stimulation, J. Phvsiol. (Lond.) 271: 253–271.Google Scholar
  28. Brimble, M. J., Dyball, R. E. J., and Forsling, M. L., 1978, Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei, J. Phvsiol. (Lond.) 278: 69–78.Google Scholar
  29. Buijs, R. M., and Swaab, D. F., 1979, Immuno-electron microscopical demonstration of vasopressin and oxytocin in the limbic system of the rat, Cell. Tissue Res. 204: 355–365.PubMedCrossRefGoogle Scholar
  30. Buijs, R. M., and Van Heerikhuize, J. J., 1982, Vasopressin and oxytocin release in the brain: A syn-aptic event, Brain Res. 252: 71–76.PubMedCrossRefGoogle Scholar
  31. Buijs, R. M., De Vries, G. J., Van Leeuwen, F. W., and Swaab, D. F., 1983, Vasopressin and oxytocin: Distribution and putative functions in the brain, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 115–122, Elsevier, Amsterdam.CrossRefGoogle Scholar
  32. Castel, M., Gainer, H., and Dellmann, H. D., 1984, Neuronal secretory systems, Int. Rev. Cytol. 88: 303–459.PubMedCrossRefGoogle Scholar
  33. Chapman, C., Hatton, G. I., Ho, Y. W., Mason, W. T., and Robinson, I. C. A. F., 1983, Release of oxytocin (OXT) and vasopressin (AVP) from slices of guinea-pig hypothalamus containing supraoptic (s.o.n.) or paraventricular (p.v.n.) nuclei, J. Physiol. (Lond.) 343:40P.Google Scholar
  34. Ciriello, J., and Caverson, M. M. 1984, Direct pathway from neurons in the ventrolateral medulla relaying cardiovascular afferent information to the supraoptic nucleus in the cat, Brain Res. 292: 221–228.PubMedCrossRefGoogle Scholar
  35. Clarke, G., and MacMillan, S. J., 1984, Electrophysiological evidence for a projection from the subfornical organ to the supraoptic nucleus, J. Anat. 139: 735.Google Scholar
  36. Clarke, G., and Merrick, L. P., 1985, Electrophysiological studies of the magnocellular neurons, in: Current Topics in Neuroendocrinology, Vol. 4: Neurobiology of ADH, (D. Ganten and D. Pfaff, eds.), pp. 17–60, Springer-Verlag, New York.Google Scholar
  37. Clarke, G. and Patrick, G., 1983, Differential inhibitory action by morphine on the release of oxytocin and vasopressin from the isolated neural lobe, Neurosci. Lett. 39: 175–180.PubMedCrossRefGoogle Scholar
  38. Clarke, G., Wood, P., Merrick, L., and Lincoln, D. W., 1979, Opiate inhibition of peptide release from the neurohumoral terminals of hypothalamic neurons, Nature (Lond.) 282: 746–748.CrossRefGoogle Scholar
  39. Cross, B. A., and Green, J. D., 1959, Activity of single neurones in the hypothalamus: Effect of osmotic and other stimuli, J. Physiol. (Lond.) 148: 554–569.Google Scholar
  40. Day, T. A., and Renaud, L. P., 1984, Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons, Brain Res. 303: 233–240.PubMedCrossRefGoogle Scholar
  41. Day, T. A., Ferguson, A. V., and Renaud, L. P., 1984, Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells, J. Physiol. (Lond.) 355: 237–249.Google Scholar
  42. De Lorenzo, R. J., 1982, Calmodulin in neurotransmitter release and synaptic function, Fed. Proc. 41: 2265–2272.Google Scholar
  43. De Wied, D., Bohus, B., Van Ree, J. M., Urban, I., and Van Wimersma Greidanus, T. J. B., 1977, Neurohypophyseal hormones and behaviour, in: Neurohypophysis: International Conference on the Neurohypophysis, Key Biscayne, Florida (A. M. Moses and L. Share, eds.), pp. 201–210, Karger, Basel.Google Scholar
  44. Doris, P. A., 1984, Vasopressin and central integrative processes, Neuroendocrinology 38: 75–85.PubMedCrossRefGoogle Scholar
  45. Douglas, W. W., 1974a, Mechanism of release of neurohypophysial hormones: Stimulus-secretion coupling, in: Handbook of Physiology, Section VII: Endocrinology, Vol. IV: The Pituitary Gland and Its Neuroendocrine Control, Part 1 (R. O. Greep and E. B Astwood, eds.), pp. 191–224, American Physiological Society, Washington, D.C.Google Scholar
  46. Douglas, W. W., 1974b, Exocytosis and the exocytosis-vesiculation sequence: with special reference to neurohypophysis, chromaffin and mast cells, calcium and calcium ionophores, in: Secretory Mechanism of Exocrine Glands (N. A. Thorn and O. H Petersen, eds.), pp. 116–129, Munks-gaard, Copenhagen.Google Scholar
  47. Douglas, W. W., and Poisner, A. M., 1964, Stimulus-secretion coupling in a neurosecretory organ: The role of calcium in the release of vasopressin from the neurohypophysis, J. Physiol. (Lond.) 172: 1–18.Google Scholar
  48. Dreifuss, J. J. and Kelly, J. S., 1972, Recurrent inhibition of antidromically identified rat supraoptic neurones, J. Physiol. (Lond.) 220: 87–103.Google Scholar
  49. Dreifuss, J. J., Harris, M. C., and Tribollet, E., 1976a, Excitation of phasically firing hypothalamic supraoptic neurones by carotid occlusion in rats, J. Physiol. (Lond.) 257: 237–254.Google Scholar
  50. Dreifuss, J. J., Tribollet, E., Baertschi, A. J., and Lincoln, D. W., 1976b, Mammalian endocrine neurones: Control of phasic activity by antidromic action potentials, Neurosci. Lett. 3: 281–286.PubMedCrossRefGoogle Scholar
  51. Dudek, F. E., Hatton, G. T., and Mac Vicar, B. A., 1980, Intracellular recording from the paraventricular nucleus in slices of rat hypothalamus, J. Physiol. (Lond.) 301: 101–114.Google Scholar
  52. Dunn, F. L., Brennan, T. J., Nelson, A. E., and Robertson, G. L., 1973, The role of blood osmolality and volume in regulating vasopressin secretion in the rat, J. Clin. Invest. 52: 3212–3219.PubMedCrossRefGoogle Scholar
  53. Dutton, A., and Dyball, R. E. J., 1979, Phasic firing enhances vasopressin release from the rat neurohypophysis, J. Physiol. (Lond.) 290: 433–440.Google Scholar
  54. Dyball, R. E. J., 1971, Oxytocin and ADH secretion in relation to electrical activity in antidromically identified supraoptic and paraventricular units, J. Physiol. (Lond.) 214: 245–256.Google Scholar
  55. Dyball, R. E. J., 1975, Potentiation of neurohypophysial hormone release by urethane (rat), J. Physiol. (Lond.) 245: 119P.Google Scholar
  56. Dyball, R. E. J., and Koizumi, K., 1969, Electrical activity in the supraoptic and paraventricular nuclei associated with neurohypophysial hormone release, J. Physiol. (Lond.) 201: 211–222.Google Scholar
  57. Dyball, R. E. J., and McPhail, C. I., 1974, Unit activity in the supraoptic and paraventricular nuclei: The effects of anesthetics, Brain Res. 67: 43–50.PubMedCrossRefGoogle Scholar
  58. Dyball, R. E. J., and Poutney, P. S., 1973, Discharge patterns of supraoptic and paraventricular neurones in rats given a 2% NaCl solution instead of drinking water, J. Endocrinol. 56: 91–98.PubMedCrossRefGoogle Scholar
  59. Dyball, R. E. J., and Prilusky, J., 1981, Responses of supraoptic neurones in the intact and deaffer-ented rat hypothalamus to injections of hypertonic NaCl, J. Physiol. (Lond.) 311: 443–452.Google Scholar
  60. Ferguson, A. V., Pittman, Q. J. and Riphagen, C. L., 1984, Effect of cooling on supraoptic neurohypophysial neuronal activity and on urine flow in the rat, J. Physiol. (Lond.) 352: 103–112.Google Scholar
  61. Gahwiler, B. H., and Dreifuss, J. J., 1979, Phasically firing neurones in long-term authors of the rat hypothalamic supraoptic area: Pacemaker and follower cells, Brain Res. 177: 95–103.PubMedCrossRefGoogle Scholar
  62. Gilbey, M. P., Coote, J. H., Fleetwood-Walker, S., and Peterson, D. F., 1982, The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurones, Brain Res. 251: 283–290.PubMedCrossRefGoogle Scholar
  63. Gillies, G., and Lowry, P. J., 1979, Corticotrophin-releasing factor may be modulated vasopressin, Nature (Lond.) 278: 463–464.CrossRefGoogle Scholar
  64. Gorman, A. L. F., Hermann, A., and Thomas, M. V., 1981, Intracellular calcium and the control of neuronal pacemaker activity, Fed. Proc. 40: 2233–2239.PubMedGoogle Scholar
  65. Groos, G. A., and Hendriks, J., 1979, Regularly firing neurons in the rat suprachiasmatic nucleus, Experientia 35: 1597–1598.PubMedCrossRefGoogle Scholar
  66. Groos, G. A., and Mason, R., 1980, The visual properties of rat and cat suprachiasmatic neurones, J. Comp. Physiol. 135: 349–356.CrossRefGoogle Scholar
  67. Haller, E. W., and Wakerley, J. B., 1980, Electrophysiological studies of paraventricular and supraop-tic neurones recorded in vitro from slices of rat hypothalamus, J. Physiol. (Lond.) 302: 347–362.Google Scholar
  68. Harris, G. W., 1948, The excitation of an antidiuretic substance by the kidney after electrical stimulation of the neurohypophysis in the unanesthetized rabbit, J. Physiol. (Lond.) 107: 430–435.Google Scholar
  69. Harris, M. C., 1979, Effects of chemoreceptor and baroceptor stimulation on the discharge of hypo-thalamic supraoptic neurones in rats, J. Endocrinol. 82: 115–125.PubMedCrossRefGoogle Scholar
  70. Harris, M. C., Dreifuss, J. J., and Legros, J. J., 1975, Excitation of phasically firing supraoptic neurones during vasopressin release, Nature (Lond.) 258: 80–82.CrossRefGoogle Scholar
  71. Harris, M. C., Banks, D., and Zerihun, L., 1982, Inputs from hypothalamic paraventricular nucleus to dorsal medullary nuclei in the rat, in: Neuroendocrinology of Vasopressin Corticoliberin and Opiomelanocortins (A. J. Baertschi and J. J Dreifuss, eds.), pp. 153–166, Academic, London.Google Scholar
  72. Harris, M. C., Ferguson, A. V., and Banks, D., 1984, The afferent pathway for carotid body chemoreceptor input to the hypothalamic supraoptic nucleus in the rat, Pflugers Arch. 400: 80–87.PubMedCrossRefGoogle Scholar
  73. Haterius, H. O., 1940, Evidence of pituitary involvement in the experimental control of water diuresis, Am. J. Physiol. 128: 506–513.Google Scholar
  74. Hatton, G. I., 1982, Phasic bursting activity of rat paraventricular neurones in the absence of synaptic transmission, J. Physiol. (Lond.) 327: 273–284.Google Scholar
  75. Hatton, G. I., Armstrong, W. E., and Gregory, W. A., 1978, Spontaneous and osmotically-stimulated activity in slices of rat hypothalamus, Brain Res. Bull. 3: 497–508.PubMedCrossRefGoogle Scholar
  76. Hatton, G. I., Ho, Y. W., and Mason, W. T., 1983, Synaptic activation of phasic bursting in rat supraoptic nucelus neurones recorded in hypothalamic slices, J. Physiol. (Lond.) 345: 297–318.Google Scholar
  77. Hayward, J. N., and Jennings, D. P., 1973a, Activity of magnocellular neuroendocrine cells in the hypothalamus of unanesthetized monkeys. I. Functional cell types and their anatomical distribution in the supraoptic nucleus and the internuclear zone, J. Physiol. 232: 515–543.PubMedGoogle Scholar
  78. Hayward, J. N., and Jennings, D. P., 1973b, Activity of magnocellular neuroendocrine cells in the hypothalamus of unanesthetized monkeys. II. Osmosensitivity of functional cell types in the supraoptic nucleus and the internuclear zone, J. Physiol. (Lond.) 232: 545–572.Google Scholar
  79. Hayward, J. N., and Jennings, D. P., 1973c, Osmosensitivity of hypothalamic magnocellular neuroendocrine cells to intracarotid hypertonic D-glucose in the waking monkey, Brain Res. 57: 467–472.PubMedCrossRefGoogle Scholar
  80. Hayward, J. N., and Vincent, J. D., 1970, Osmosensitive single neurones in the hypothalamus of unanesthetized monkeys, J. Physiol. (Lond.) 210: 947–972.Google Scholar
  81. Hayward, J. N., Reaves, T. A., Greenwood, R. S., and Meeker, R. B., 1983, Neuroendocrine cells in vitro: Electrophysiology, triple-labeling with dye marking, immunocytochemical and ultrastructural analysis, and hormone release, Methods Enzymol. 103: 132–147.PubMedCrossRefGoogle Scholar
  82. Holzbauer, M., Muscholl, E., Racke, K., and Sharman, D. F., 1983, Evidence that dopamine is a neurotransmitter in the neurointermediate lobe of the hypophysis, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 357–364, Elsevier, Amsterdam.Google Scholar
  83. Hoorneman, E. M. D., and Buijs, R. M., 1982, Vasopressin fibre pathways in the rat brain following suprachiasmatic nucleus lesioning, Brain Res. 243: 235–241.PubMedCrossRefGoogle Scholar
  84. Hosoya, Y., and Matsushita, M., 1979, Identification and distribution of the spinal and hypophyseal projection neurones in the paraventricular nucleus of the rat: A light and electron microscopic study with the horseradish peroxidase method, Exp. Brain Res. 35: 313–331.CrossRefGoogle Scholar
  85. Inouye, S. T., and Kawamura, H., 1979, Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus, Proc. Natl. Acad. Sci. U.S.A. 76: 5962–5966.PubMedCrossRefGoogle Scholar
  86. Iversen, L. L., Iversen, S. D., and Bloom, F. E., 1980, Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis, Nature (Lond.) 284: 350–351.CrossRefGoogle Scholar
  87. Jennings, D. P., Haskins, J. T., and Rodgers, J. M., 1978, Comparison of firing patterns and sensory responsiveness between supraoptic and other hypothalamic neurons in the unanesthetized sheep, Brain Res. 149: 347–364.PubMedCrossRefGoogle Scholar
  88. Kannan, H., and Yagi, K., 1978, Supraoptic neurosecretory neurons: Evidence for the existence of converging inputs both from carotid baroreceptors and osmoreceptors, Brain Res. 145: 385–390.PubMedCrossRefGoogle Scholar
  89. Kaiman, H., and Yamashita, H., 1983, Electrophysiological study of paraventricular nucleus neurons projecting to the dorsomedial medulla and their response to baroreceptor stimulation in rats, Brain Res. 279: 31–40.CrossRefGoogle Scholar
  90. Kannan, H., Osaka, T., and Yamashita, H., 1984, Paraventricular ADH-secreting neurons: Synaptic inputs from the caudal ventrolateral medulla in rats, Neurosci. Lett. (Suppl.) 17:S94.Google Scholar
  91. Knepel, W., and Meyer, D. K., 1983, The effect of naloxone on vasopressin release from rat neuro-hypophysis incubated in vitro, J. Physiol. (Lond.) 341: 507–515.Google Scholar
  92. Koizumi, K., and Yamashita, H., 1972, Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recording, J. Physiol. (Lond.) 221: 683–705.Google Scholar
  93. Koizumi, K., and Yamashita, H., 1978, Influence of atrial stretch receptors on hypothalamic neurosecretory neurons, J. Physiol. (Lond.) 285: 341–358.Google Scholar
  94. Kow, L.-M., and Pfaff, D. W., 1984, Suprachiasmatic neurons in tissue slices from ovariectomized rats: Electrophysiological and neuropharmacological characterization and the effects of estrogen treatment, Brain Res. 297: 275–286.PubMedCrossRefGoogle Scholar
  95. Legendre, P., Cooke, I. M., and Vincent, J. D., 1982, Regenerative responses of long duration recorded intracellularly from dispersed cell cultures of fetal mouse hypothalamus, J. Neurophysiol. 48: 1121–1141.PubMedGoogle Scholar
  96. Leng, G., 1980, Rat supraoptic neurones: The effects of locally applied hypertonic saline, J. Physiol. (Lond.) 304: 405–414.Google Scholar
  97. Leng, G., 1981a, The effects of neural stalk stimulation upon firing patterns in rat supraoptic neurones, Exp. Brain Res. 41: 135–145.PubMedCrossRefGoogle Scholar
  98. Leng, G., 1981b, Phasically firing neurones in the lateral hypothalamus of anesthetized rats, Brain Res. 230: 390–393.PubMedCrossRefGoogle Scholar
  99. Leng, G., 1982. Lateral hypothalamic neurons: Osmosensitivity and the influence of activating mag-nocellular neurosecretory neurones, J. Physiol. (Lond.) 326: 35–48.Google Scholar
  100. Leng, G., and Dyball, R. E. J., 1983, Intercommunication in the rat supraoptic nucleus, Q. J. Exp. Physiol. 68: 493–504.PubMedGoogle Scholar
  101. Leng, G., and Dyball, R. E. J., 1984a, Recurrent inhibition: A recurring misinterpretation, Q. J. Exp. Physiol. 69: 393–395.PubMedGoogle Scholar
  102. Leng, G., and Dyball, R. E. J., 1984b, Altered baroreceptor inputs to the supraoptic nucleus of the Brattleboro rat, Exp. Brain Res. 54: 571–574.PubMedCrossRefGoogle Scholar
  103. Leng, G., and Wiersma, J., 1981, Effects of neural stalk stimulation on phasic discharge of supraoptic neurones in Brattleboro rats devoid of vasopressin, J. Endocrinol. 90: 211–220.PubMedCrossRefGoogle Scholar
  104. Leng, G., Mason, W. T., and Dyer, R. G., 1982, The supraoptic nucleus as an osmoreceptor, Neu-roendocrinology 34: 75–82.Google Scholar
  105. Lincoln, D. W., 1974, Dynamics of oxytocin secretion, in: Neurosecretion, The Final Neuroendocrine Pathway (F. G. W. Knowles and L. Vollrath, eds.), pp. 129–133, Springer-Verlag, Berlin.Google Scholar
  106. Lincoln, D. W., and Wakerley, J. B., 1974, Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin, J. Physiol. (Lond.) 242: 533–544.Google Scholar
  107. Malmo, R. B., and Mundl, W. J., 1975, Osmosensitive neurons in the rat’s preoptic area: Medial-lateral comparison, J. Comp. Physiol. Psychol. 88: 161–175.PubMedCrossRefGoogle Scholar
  108. Martin, R., Geis, R., Holl, R., Schafer, M., and Voight, K. H., 1983, Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: Immunoreactive methionine-enkephalin-, leucine-enkephalin-and cholecystokinin-like substances, Neuroscience 8: 213–227.PubMedCrossRefGoogle Scholar
  109. Martin, R., and Voigt, K. H., 1981, Enkephalin co-exists with oxytocin and vasopressin in nerve terminals of rat neurohypophysis, Nature (Lond.) 289: 502–504.CrossRefGoogle Scholar
  110. Mason, W. T., 1980, Supraoptic neurones of rat hypothalamus are osmosensitive, Nature (Lond.) 287: 154–156.CrossRefGoogle Scholar
  111. Mason, W. T., 1983, Electrical properties of neurones recorded from the rat supraoptic nucleus in vitro, Proc. R. Soc. Lond. Biol. 217: 141–161.PubMedCrossRefGoogle Scholar
  112. Mason, W. T., and Leng, G., 1984, Complex action potential waveform recorded from supraoptic and paraventricular neurones of the rat: Evidence for sodium and calcium spike components at different membrane sites, Exp. Brain Res. 56: 135–143.PubMedCrossRefGoogle Scholar
  113. Mason, W. T., Ho, Y. W., and Hatton, G. I., 1984, Axon collaterals of supraoptic neurones: Anatomical and electrophysiological evidence for their existence in the lateral hypothalamus, Neuroscience 11: 169–182.PubMedCrossRefGoogle Scholar
  114. Mathison, R., and Dreifuss, J. J., 1981, Chloride-dependent action of gaba on the infundibular-neu-rohypophysial compound action potential, Neurosci. Lett. 22: 309–312.CrossRefGoogle Scholar
  115. Menninger, R. P., 1979, Responses of supraoptic neurosecretory cells to changes in left atrial distension, Am. J. Physiol. 136:R261-R267.Google Scholar
  116. Menninger, R. P., and Frazier, D. T., 1972, Effects of blood volume and atrial stretch on hypothalamic single unit activity, Am. J. Physiol. 223: 288–293.PubMedGoogle Scholar
  117. Miselis, R., 1981, The efferent projections of the subfornical organ of the rat: A circumventricular organ within a neural network subserving water balance, Brain Res. 230: 1–23.PubMedCrossRefGoogle Scholar
  118. Moore, R. Y., 1982, The suprachiasmatic nucleus and the organization of a circadian system, Trends Neurosci. 5: 404–407.CrossRefGoogle Scholar
  119. Moos, F., Freund-Mercier, M. J., Guerne, Y., Guerne, J. M., Stoeckel, M. E., and Richard, P., 1984, Release of oxytocin and vasopressin by magnocellular nuclei in vitro: Specific facilitatory effect of oxytocin on its own release, J. Endocrinol. 102: 63–72.PubMedCrossRefGoogle Scholar
  120. Morris, J. F., 1983, Organization of neural inputs to the supraoptic and paraventricular nuclei: Anatomical aspects, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 3–18, Elsevier, Amsterdam.Google Scholar
  121. Morris, J. F., and Nordmann, J. J., 1980, Membrane recapture after hormone release from nerve endings in the neural lobe of the rat pituitary gland, Neuroscience 5: 639–649.PubMedCrossRefGoogle Scholar
  122. Nishino, H., and Koizumi, K., 1977, Responses of neurons in the suprachiasmatic nuclei of the hypothalamus to putative transmitters, Brain Res. 120: 167–172.PubMedCrossRefGoogle Scholar
  123. Nordmann, J. J., 1983, Stimulus-secretion coupling, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 281–304, Elsevier, Amsterdam.Google Scholar
  124. Nordmann, J. J., and Dreifuss, J. J., 1972, Hormone release evoked by electrical stimulation of rat neurohypophyses in the absence of action potentials, Brain Res. 45: 604–607.PubMedCrossRefGoogle Scholar
  125. Nordmann, J. J., Dreifuss, J. J., and Legros, J. J., 1971, A correlation of release of polypeptide hormones and of immunoreactive neurophysin from isolated rat neurohypophyses, Experientia 27: 1344–1345.PubMedCrossRefGoogle Scholar
  126. Nordmann, J. J., Desmazes, J. P., and Georgescault, D., 1982, The relationship between the membrane potential of neurosecretory nerve endings, as measured by a voltage sensitive dye, and the release of neurohypophysial hormones, Neuroscience 7: 731–737.PubMedCrossRefGoogle Scholar
  127. Oertel, W. H., Mugnaini, E., Tappaz, M. L., Weise, V. K., Dahl, A. D., Schmechel, D. E., and Kopin, I. J., 1982, Central GABAergic innervation of the neurointermediate pituitary lobe: Biochemical and immunocytochemical study of the rat, Proc. Natl. Acad. Sci. U.S.A. 79: 675–679.PubMedCrossRefGoogle Scholar
  128. Paisley, A. C., and Summerlee, A. J. S., 1984, Activity of putative oxytocin neurones during reflex milk ejection in conscious rabbits, J. Physiol. (Lond.) 347: 465–478.Google Scholar
  129. Passo, S. S., Thornborough, J. R., and Ferris, C. R., 1981, A functional analysis of dopaminergic innervation of the neurohypophysis, Am. J. Physiol. 241:E186-E190.Google Scholar
  130. Pittman, Q. J., 1983, Increase in antidromic latency of neurohypophyseal neurons during sustained activation, Neurosci. Lett. 37: 239–244.PubMedCrossRefGoogle Scholar
  131. Pittman, Q. J., and Lawrence, D., 1982, Descending hypothalamic pathways: Electrophysiological investigations of their possible functions, in: Neuroendocrinology of Vasopressin, Corticoliberin and Opiomelanocortins (A. J. Baertschi and J. J Dreifuss, eds.), pp. 167–176, Academic, London.Google Scholar
  132. Pittman, Q. J., Hatton, J. D., and Bloom, F. E., 1981a, Spontaneous activity of perfused hypothalamic slices: Dependence on calcium content of perfusate, Exp. Brain Res. 42: 49–52.PubMedCrossRefGoogle Scholar
  133. Pittman, Q. J., Blume, H. W., and Renaud, L. P., 1981b, Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and mid-brain periaqueductal grey: An electrophysiological study in the rat, Brain Res. 215: 15–28.PubMedCrossRefGoogle Scholar
  134. Pittman, Q. J., Lawrence, D., and Lederis, K., 1983, Presynaptic interactions in the neurohypophysis: Endogenous modulators of release, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 319–332, Elsevier, Amsterdam.Google Scholar
  135. Poulain, D. A., 1983, Electrophysiology of the afferent input to oxytocin-and vasopressin-secreting neurones. Facts and problems, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 39–52, Elsevier, Amsterdam.Google Scholar
  136. Poulain, D. A., and Wakerley, J. B., 1982, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin, Neuroscience 7: 773–808.PubMedCrossRefGoogle Scholar
  137. Poulain, D. A., Wakerley, J. B., and Dyball, R. E. J., 1977, Electrophysiological differentiation of oxytocin-and vasopressin-secreting neurones, Proc. R. Soc. Lond. Biol. 196: 367–384.PubMedCrossRefGoogle Scholar
  138. Poulain, D. A., Ellendorff, F., and Vincent, J. D., 1980, Septal connections with identified vasopressin and oxytocin neurones in the supraoptic nucleus of the rat. An electrophysiological investigation, Neuroscience 5: 379–387.PubMedCrossRefGoogle Scholar
  139. Poulain, D. A., Lebrun, C. J., and Vincent, J. D., 1981, Electrophysiological evidence for connections between septal neurones and the supraoptic nucleus of the hypothalamus of the rat, Exp. Brain Res. 42: 260–268.PubMedCrossRefGoogle Scholar
  140. Reaves, T. A., Hou-Yu, A., Zimmerman, E. A., and Hayward, J. N., 1983, Supraoptic neurons in the rat hypothalamo-neurohypophysial expiant: Double-labeling with lucifer yellow injection and immunocytochemical identification of vasopressin-and neurophysin-containing neuroendocrine cells, Neurosci. Lett. 37: 137–142.PubMedCrossRefGoogle Scholar
  141. Robertson, G. L., and Athar, S., 1976, The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man, J. Clin. Endocrinol. Metab. 42: 613–620.PubMedCrossRefGoogle Scholar
  142. Robinson, I. C. A. F., 1983, Neurohypophysial peptides in cerebrospinal fluid, in: The Neurohypoph-ysis: Structure, Function and Control Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 129–146, Elsevier, Amsterdam.Google Scholar
  143. Rossier, J., 1982, Opioid peptides have found their roots, Nature (Lond.) 298: 221–222.CrossRefGoogle Scholar
  144. Rossier, J., Battenberg, E., Pittman, Q., Bayon, A., Koda, L., Miller, R., Guilleman, R., and Bloom, R., 1979, Hypothalamic enkephalin neurones may regulate the neurohypophysis, Nature (Lond.) 277: 653–655.CrossRefGoogle Scholar
  145. Sakai, K. K., Marks, B. H., George, J. M., and Koestner, A., 1974, The isolated organ-cultured supraoptic nucleus as a neuropharmacological test system, J. Pharmacol. Exp. Ther. 190: 482–491.PubMedGoogle Scholar
  146. Sawaki, Y., 1979, Suprachiasmatic nucleus neurones: Excitation and inhibition mediated by the direct retino-hypothalamic projection in female rats, Exp. Brain Res. 37: 127–138.PubMedCrossRefGoogle Scholar
  147. Sawchenko, P. E., and Swanson, L. W., 1982, The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat, Brain Res. Rev. 4: 275–325.CrossRefGoogle Scholar
  148. Sawchenko, P. E., and Swanson, L. W., 1983, The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 19–30, Elsevier, Amsterdam.Google Scholar
  149. Schofield, C. N., 1978, Electrical properties of neurones in the olfactory cortex slice in vitro, J. Physiol. (Lond.) 275: 535–546Google Scholar
  150. Scholer, J., and Sladek, J. R., 1982, An altered noradrenergic innervation of the Brattleboro rat supraoptic nucleus, Ann. NY. Acad. Sci. 394: 718–728.PubMedCrossRefGoogle Scholar
  151. Schwartzkroin, P. A., 1977, Further characteristics of hippocampal CA1 cells in vitro, Brain Res. 128: 53–68.PubMedCrossRefGoogle Scholar
  152. Sgro, S., Ferguson, A. V., and Renaud, L. P., 1984, Subfornical organ-supraoptic nucleus connections: An electrophysiological study in the rat, Brain Res. 303: 7–13.PubMedCrossRefGoogle Scholar
  153. Shibata, S., Oomura, Y., Kita, H., and Hattori, K., 1982, Orcadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice, Brain Res. 247: 154–158.PubMedCrossRefGoogle Scholar
  154. Shibata, S., Oomura, Y., Liou, S. Y., and Ueki, S., 1984, Electrophysiological studies of the development of suprachiasmatic neuronal activity in hypothalamic slice preparations, Dev. Brain Res. 13: 29–35.CrossRefGoogle Scholar
  155. Shade, R. E., and Share, L., 1975, Volume control of plasma antidiuretic hormone concentration following acute blood volume expansion in the anesthetized dog, Endocrinology 97: 1048–1057.PubMedCrossRefGoogle Scholar
  156. Shaw, F. D., and Dyball, R. E. J., 1984, The relationship between calcium uptake and hormone release in the isolated neurohypophysis, Neuroendocrinology 38: 504–510.PubMedCrossRefGoogle Scholar
  157. Shaw, F. D., Dyball, R. E. J., and Nordmann, J. J., 1983, Mechanisms of inactivation of neurohypophysial hormone release, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 305–318, Elsevier, Amsterdam.Google Scholar
  158. Shaw, F. D., Bicknell, R. J., and Dyball, R. E. J., 1984, Facilitation of vasopressin release from the neurohypophysis by application of electrical stimuli in bursts: Relevant stimulation parameters, Neuroendocrinology 39: 371–376.PubMedCrossRefGoogle Scholar
  159. Silverman, A. J., Hou-Yu, A., and Zimmerman, E. A., 1983, Ultrastructural studies of vasopressin neurons of the paraventricular nucleus of the hypothalamus using a monoclonal antibody to vasopressin: Analysis of synaptic input, Neuroscience 9: 141–155.PubMedCrossRefGoogle Scholar
  160. Sofroniew, M. V., 1983, Morphology of vasopressin and oxytocin neurones and their central and vascular projections, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 101–114, Elsevier, Amsterdam.CrossRefGoogle Scholar
  161. Sofroniew, M. W., and Schrell, U., 1981, Evidence for a direct projection from vasopressin and oxytocin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata: Immuno-cytological visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons, Neurosci. Lett. 22: 211–217.CrossRefGoogle Scholar
  162. Sofroniew, M. V., and Weindl, A., 1978, Projections from the parvocellular vasopressin-and neuro-physin-containing neurons of the suprachiasmatic nucleus, Am. J. Anat. 153: 391–430.PubMedCrossRefGoogle Scholar
  163. Summerlee, A. J. S., 1981, Extracellular recordings from oxytocin neurones during the expulsive phase of birth in unanesthetized rats, J. Physiol. (Lond.) 321: 1–9.Google Scholar
  164. Swanson, L. W., and Kuypers, H. G. J. M., 1980, The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of the projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double-labelling methods, J. Comp. Neurol. 194: 555–570.PubMedCrossRefGoogle Scholar
  165. Theodosis, D. T., Legendre, P., Vincent, J. D., and Cooke, I., 1983, Immunocytochemically identified vasopressin neurons in culture show slow calcium dependent electrical responses. Science 221: 1052–1054.PubMedCrossRefGoogle Scholar
  166. Thompson, S., and Smith, S. J., 1976, Depolarizing after-potentials and burst production in molluscan pacemaker neurones, J. Neurophysiol. 39: 153–161.PubMedGoogle Scholar
  167. Thomson, A. M., 1982, Responses of supraoptic neurones to electrical stimulation of the medial amygdaloid nucleus, Neuroscience 7: 2197–2205.PubMedCrossRefGoogle Scholar
  168. Thomson, A. M., 1984, Correlations between the firing of supraoptic neurones in slices of rat hypothalamus, Exp. Brain Res. 54: 217–224.PubMedCrossRefGoogle Scholar
  169. Thomson, A. M., 1984, Slow, regular discharge in suprachiasmatic neurones is calcium dependent, in slices of rat brain, Neuroscience 13: 761–767.PubMedCrossRefGoogle Scholar
  170. Thomson, A. M., West, D. C., and Vlachonikolis, I. G., 1984, Regular firing patterns of suprachiasmatic neurons maintained in vitro, Neurosci. Lett. 52: 329–334.PubMedCrossRefGoogle Scholar
  171. Tweedle, C. D., 1983, Ultrastructural manifestations of increased hormone release in the neurohypophysis, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng eds.), pp. 259–272, Elsevier, Amsterdam.CrossRefGoogle Scholar
  172. Tweedle, C. D., and Hatton, G. I., 1980, Evidence for dynamic interactions between pituicytes and neurosecretory endings in the neurohypophysis, Neuroendocrinology 38: 504–510.Google Scholar
  173. Ueda, S., Kawata, K., and Sano, Y., 1983, Identification of serotonin and vasopressin immunoreac-tivities in the suprachiasmatic nucleus of four mammalian species, Cell Tissue Res. 234: 237–248.PubMedCrossRefGoogle Scholar
  174. Van Leeuwen, F. W., and Caffe, R., 1983, Immunoreactive vasopressin cell bodies in the rat bed nucleus of the stria terminalis, Cell Tissue Res. 228: 525–534.PubMedCrossRefGoogle Scholar
  175. Van Leeuwen, F. W., Caffe, A. R., and De Vries, G. J., 1985, Vasopressin cells in the bed nucleus of the stria terminalis of the rat: Sex differences and the influence of androgens, Brain Res. 325: 391–394.PubMedCrossRefGoogle Scholar
  176. Van Leeuwen, F. W., and De Vries, G. J., 1983, Enkephalin-glial interaction and its consequence for vasopressin and oxytocin release from the rat neural lobe, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 343–351, Elsevier, Amsterdam.CrossRefGoogle Scholar
  177. Van Leeuwen, F. W., Pool, C. W., and Sluiter, A., 1983, Enkephalin immunoreactivity in synaptoid elements in glial cells in the rat neural lobe, Neuroscience 8: 229–241.PubMedCrossRefGoogle Scholar
  178. Vandesande, F., Dierickx, K., and De Mey, J., 1975, Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei, Cell Tissue Res. 156: 377–380.PubMedGoogle Scholar
  179. Veale, W. L., Kasting, N. W., and Cooper, K. E., 1981, Arginine vasopressin and endogenous anti-pyresis: Evidence and significance, Fed. Proc. 40: 2750–2753.PubMedGoogle Scholar
  180. Verney, E. B., 1947, The antidiuretic hormone and the factors which determine its release, Proc. R. Soc. Lond. (Biol.) 135: 25–106.CrossRefGoogle Scholar
  181. Vincent, J. D., Arnauld, E., and Bioulac, B., 1972, Activity of osmosensitive single cells in the hypothalamus of the behaving monkey during drinking, Brain Res. 44: 371–384.PubMedCrossRefGoogle Scholar
  182. Wakerley, J. B., and Lincoln, D. W., 1973, The milk-ejection reflex of rat: A 20-to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release, J. Endocrinol. 57: 477–493.PubMedCrossRefGoogle Scholar
  183. Wakerley, J. B., and Noble, R., 1983, Extrinsic control of phasic supraoptic neurones in vitro: Burst initiation and termination following brief changes in excitatory drive, Neurosci. Lett. 42: 329–334.PubMedCrossRefGoogle Scholar
  184. Wakerley, J. B., Poulain, D. A., and Brown, D., 1978, Comparison of firing patterns in oxytocin-and vasopressin-releasing neurones during progressive dehydration, Brain Res. 148: 425–440.PubMedCrossRefGoogle Scholar
  185. Walters, J. K., and Hatton, G. L, 1974, Supraoptic neuronal activity in rats during five days of water deprivation, Physiol. Behav. 13: 661–667.PubMedCrossRefGoogle Scholar
  186. Wang, B. C., Share, L., Crofton, J. T., and Kimura, T., 1982, Effect of intravenous and intracerebro-ventricular infusion of hypertonic solutions on plasma and cerebrospinal fluid vasopressin concentrations, Neuroendocrinology 34: 215–221.PubMedCrossRefGoogle Scholar
  187. Wang, B. C., Sundet, W. D., Hakumaki, M. O. K., and Goetz, K. L., 1983, Vasopressin and renin responses to haemorrhage in conscious, cardiac denervated dogs, Am. J. Physiol. 245: H399–H405.PubMedGoogle Scholar
  188. Watson, S. J., Akil, H., Fischli, W., Goldstein, A., Zimmerman, E., Nilaver, G., and Van Wimersma Greidanus, T. B., 1982, Dynorphin and vasopressin: Common localization in magnocellular neurons, Science 216: 85–87.PubMedCrossRefGoogle Scholar
  189. Weber, E., Roth, K. A., and Barchas, J. D., 1981, Co-localization of α-neoendorphin and dynorphin immunoreactivity in hypothalamic neurones, Biochem. Biophys. Res. Commun. 103: 951–958.PubMedCrossRefGoogle Scholar
  190. Weitzman, R. E., Fisher, D. A., DiStephano, J. J., and Bennett, C. M., 1977, Episodic secretion of arginine vasopressin, Am. J. Physiol. 233: E32–E36.PubMedGoogle Scholar
  191. Wheal, H. V., and Thomson, A. M., 1984, The electrical properties of neurones of the rat suprachias-matic nucleus recorded intracellularly in vitro, Neuroscience 13: 97–104.PubMedCrossRefGoogle Scholar
  192. Yagi, K., Azuma, T., and Matsuda, K., 1966, Neurosecretory cell: Capable of conducting impulse in rats, Science 154: 778–779.PubMedCrossRefGoogle Scholar
  193. Yamashita, H., 1977, Effect of baro-and chemoreceptor activation on supraoptic nuclei neurons in the hypothalamus, Brain Res. 126: 551–556.PubMedCrossRefGoogle Scholar
  194. Yamashita, H., and Koizumi, K., 1979, Influence of carotid and aortic baroreceptors on neurosecretory neurons in supraoptic nuclei, Brain Res. 170: 259–277.PubMedCrossRefGoogle Scholar
  195. Yamashita, H., Inenaga, K., Kawata, M., and Sano, M., 1983, Phasically firing neurons in the supraoptic nucleus of the rat hypothalamus: Immunocytochemical and electrophysiological studies, Neurosci. Lett. 37: 87–92.PubMedCrossRefGoogle Scholar
  196. Yamashita, H., Kannan, H., Inenaga, K., and Koizumi, K., 1984a, The role of cardiovascular and muscle afferent systems in control of body water balance, J. Auton. Nerv. Syst. 10: 305–316.PubMedCrossRefGoogle Scholar
  197. Yamashita, H., Osaka, T., and Kannan, H., 1984b, Effects of electrical and chemical stimulation of the paraventricular nucleus on neurons in the subfornical organ of cats, Brain Res. 323: 176–180.PubMedCrossRefGoogle Scholar
  198. Yamashita, H., Inenaga, K., and Koizumi, K., 1984c, Possible projections from regions of paraventricular and supraoptic nucleus to the spinal cord: Electrophysiological studies, Brain Res. 296: 373–378.PubMedCrossRefGoogle Scholar
  199. Zambrano, D., and De Robertis, E., 1966, The secretory cycle of supraoptic neurons in the rat. A structural-functional correlation, Z. Zeilforsch. 73: 414–431.CrossRefGoogle Scholar
  200. Zerbe, R. L., and Palkovits, M., 1984, Changes in the vasopressin content of discrete brain regions in response to stimuli for vasopressin secretion, Neuroendocrinology 38: 285–289.PubMedCrossRefGoogle Scholar
  201. Zerihun, L., and Harris, M. C., 1981, Electrophysiological identification of neurones of paraventricular nucleus sending axons to both the neurohypophysis and the medulla in the rat, Neurosci. Lett. 23: 157–160.PubMedCrossRefGoogle Scholar
  202. Zerihun, L., and Harris, M., 1983, An electrophysiological analysis of caudally-projecting neurones from the hypothalamic paraventricular nucleus in the rat, Brain Res. 261: 13–20.PubMedCrossRefGoogle Scholar
  203. Zingg, H. H., Baertschi, A. J., and Dreifuss, J. J., 1979, Action of gamma-aminobutyric acid on hypothalamo-neurohypophysial axons, Brain Res. 171: 453–459.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. B. Wakerley
    • 1
  1. 1.Department of Anatomy, The Medical SchoolUniversity of BristolBristolEngland

Personalised recommendations