Vasopressin pp 117-174 | Cite as

Development of Vasopressin Systems and Their Functions

  • G. J. Boer

Abstract

Studies on the morphology and function of vasopressin (VP)-synthesizing cells during ontogeny have focused on the hypothalamus-neurohypophysial system (HNS), especially in the rat. In the past decade, as a result of new immunocyto-chemical techniques in particular, but also because of increasing knowledge about the biochemistry of the adult HNS (see Chapter 4, this volume), much has been added to our understanding of the development of this system. Its functional capacity during parturition and in the regulation of fluid and electrolyte homeostasis perinatally has also received a great deal of attention, since sensitive and specific radioimmunoassays (RIAs) have permitted the detection of small amounts of VP. Part of the interest in this field can be explained by the fact that the HNS is a well-defined neuroendocrine system (see Chapter 1, this volume) that serves as an excellent model for the description of developmental mechanisms in the central nervous system (CNS). Furthermore, grafting studies with fetal hypothalamus tissue were recently introduced as a tool in exploring the plasticity and integration of developing VP cells.

Keywords

Median Eminence Suprachiasmatic Nucleus Lateral Septum External Zone Magnocellular Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J., and Bayer, S. A., 1978a, Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons in the hypothalamus, J. Comp. Neurol. 182: 945–972.PubMedGoogle Scholar
  2. Altman, J., and Bayer, S. A., 1978b, Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin in its neurons, J. Comp. Neurol. 182: 973–994.PubMedGoogle Scholar
  3. Altman, J., and Bayer, S. A., 1980, Development of the brain stem in the rat. IV. Thymidine radiographic study of the time of origin of neurons in the pontine region, J. Comp. Neurol. 194: 905–929.PubMedGoogle Scholar
  4. Altura, B. M., 1982, Microcirculatory and vascular smooth muscle behavior in the Brattleboro rat: Relationship to reticuloendothelial system function and resistance to shock and trauma, Ann. N.Y. Acad. Sci. 394: 375–390.PubMedGoogle Scholar
  5. Anderson, C. H., 1978, Time of neuron origin in the anterior hypothalamus of the rat, Brain Res. 154: 119–122.PubMedGoogle Scholar
  6. Ang, V. T. Y., and Jenkins, J. S., 1984, Neurohypophysial hormones in the adrenal medulla, J. Clin. Endocrinol. Metabol. 58: 688–691.Google Scholar
  7. Arimura, A., Sawano, S., Redding, T. W., and Schally, A. V., 1968, Studies on retarded growth of rats with hereditary hypothalamic diabetes insipidus, Neuroendocrinology 3: 187–192.PubMedGoogle Scholar
  8. Armstrong, W. E., Sladek, C. D., and Sladek, J. R., Jr., 1982, Characterization of noradrenergic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophysial system, Endocrinology 111: 273–279.PubMedGoogle Scholar
  9. Armstrong, W. E., Warach, S., Hatton, G. I., and McNeill, T. H., 1980, Subnuclei in the rat hypothalamic paraventricular nucleus: A cytoarchitectural, horseradish peroxidase and immunocyto-chemical analysis, Neuroscience 5: 1931–1958.PubMedGoogle Scholar
  10. Artman, H. G., Leake, R. D., Weitzman, R. E., Sawyer, W. H., Fisher, D. A., 1984, Radioimmunoassay of vasotocin, vasopressin, and oxytocin in human neonatal cerebrospinal and amniotic fluid, Dew Pharmacol. Ther. 7: 39–49.Google Scholar
  11. Beauvillain, J.-C., 1973, Structure fine de l’eminence médiane de souris au cours de son ontogenèse, Z. Zeilforsch. 139: 201–215.Google Scholar
  12. Björklund, A., and Stenevi, V. (eds.), 1985, Neural Grafting in the Mammalian CNS, Elsevier, Amsterdam.Google Scholar
  13. Boer, G. J., 1985, Vasopressin and brain development: Studies using the Brattleboro rat, Peptides 6 (Suppl. 1): 49–62.PubMedGoogle Scholar
  14. Boer, G. J., and Patel, A. J., 1983, Disorders of cell acquisition in the brain of rats deficient in vasopressin (Brattleboro mutant), Neurochem. Int. 5: 463–469.PubMedGoogle Scholar
  15. Boer, G. J., and Rieutort, M., 1983, Serum levels of growth hormone during the stunted postnatal development of the vasopressin-deficient Brattleboro rat, J. Endocrinol. 98: 351–356.PubMedGoogle Scholar
  16. Boer, G. J., and Swaab, D. F., 1985, Neuropeptide effects on brain development to be expected from behavioral teratology, Peptides 6 (Suppl. 2): 21–28.PubMedGoogle Scholar
  17. Boer, G. J., Van Heerikhuize, J., and T. P. van der Woude, 1987, Elevated serum oxytocin of the vasopressin-deficient Brattleboro rat is present throughout life and is not sensitive to treatment with vasopressin. J. Endocrinol. Submitted for Publication.Google Scholar
  18. Boer, G. J., Buijs, R. M., Swaab, D. F., and De Vries, G. J., 1980a, Vasopressin and the developing brain, Peptides l (Suppl. l): 203–209.Google Scholar
  19. Boer, G. J., Swaab, D. F., Uylings, H. B. M, Boer, K., Buijs, R. M., and Velis, D. N., 1980b, Neuropeptides in rat brain development, Prog. Brain Res. 53: 207–227.PubMedGoogle Scholar
  20. Boer, G. J., Boer, K., and Swaab, D. F., 1982a, On the reproductive and developmental differences within the Brattleboro strain, Ann. N.Y. Acad. Sci. 394: 37–45.PubMedGoogle Scholar
  21. Boer, G. J., Van Rheenen-Verberg, C. M. H., and Uylings, H. B. M., 1982b, Impaired brain development of the diabetes inspidus Brattleboro rat, Dev. Brain Res. 3: 557–575.Google Scholar
  22. Boer, G. J., Uylings, H. B. M., Patel, A. J., Boer, K., Kragten, R., 1982c, The regional impairment of brain development in the Brattleboro diabetes insipidus rat: Some vasopressin supplementation studies, Ann. N.Y. Acad. Sci. 394: 703–717.PubMedGoogle Scholar
  23. Boer, G. J., Dozy, M. H., and Uylings, H. B. M., 1984a, Cerebellar DNA and tissue water changes in the brain of diabetes inspidus Brattleboro rats are already present at birth, Int. J. Dev. Neurosci. 2: 301–304.Google Scholar
  24. Boer, G. J., Kragten, R., Kruisbrink, J., and Swaab, D. F., 1984b, Vasopressin fails to restore postnatally the stunted brain development in the Brattleboro rat, but affects water metabolism permanently, Neurobehav. Toxicol. Teratol. 6: 103–109.PubMedGoogle Scholar
  25. Boer, G. J., Hall, K., and Sara, V. R., 1985a, Transient enhancement of serum somatomedin levels prior to weaning of growth-impaired vasopressin-deficient Brattleboro rats, J. Dev. Phys. 7: 321–327.Google Scholar
  26. Boer, G. J., Gash, D. M., Dick, L., and Schluter, N., 1985b, Vasopressin neuron survival in neonatal Brattleboro rats: Critical factors in graft development and innervation of the host brain, Neuroscience 15: 1087–1109.PubMedGoogle Scholar
  27. Boer, K., Dogterom, J., and Pronker, H. F., 1980c, Pituitary content of oxytocin, vasopressin and alpha-melanocyte-stimulating hormone in the fetus of the rat during labour, J. Endocrinol. 86: 221–229.PubMedGoogle Scholar
  28. Bugnon, C., Fellmann, D., Gouget, A., and Cardot, J., 1982, Ontogeny of the corticoliberin neuroglandular system in rat brain, Nature (Lond.) 298: 159–161.Google Scholar
  29. Buijs, R. M., Velis, D. N., and Swaab, D. F., 1980, Ontogeny of vasopressin and oxytocin in the fetal rat: Early vasopressinergic innervation of the fetal brain, Peptides 1: 315–324.PubMedGoogle Scholar
  30. Burbach, J. P. H., De Hoop, M. J., Schmale, H., Richter, D., De Kloet, E. R., Ten Haaf, J. A., and De Wied, D., 1984, Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei, Neuroendocrinology 39: 582–584.PubMedGoogle Scholar
  31. Burbach, J. P. H., Van Tol, H. H. M., Snijdewint, F. G. M., Boer, G. J., Voorhuis, Th. A. M., Liu, B., and De Wied, D., 1986, Regulation of the mutant vasopressin gene and the oxytocin gene of the homozygous Brattleboro rat: ontogeny of mRNAs and effect of dDAVP treatment, NeuroScience Meeting, Washington DC, abstract 188.9.Google Scholar
  32. Burford, G. D., and Robinson, I. C. A. F., 1982, Oxytocin, vasopressin and neurophysins in the hypothalamo-neurohypophysial system of the human fetus, J. Endocrinol. 95: 403–408.PubMedGoogle Scholar
  33. Burford, G. D., Robinson, I. C. A. F., and Swann, R. W., 1981, Neurophysin and hormone levels of the hypothalamus, neurohypophysis and cerebrospinal fluid of the human fetus, Acta Endocrinol (Copenh.) (Suppl.) 97: 243:317.Google Scholar
  34. Burlet, A., Chateau, M., and Czernichow, P., 1979, Immunocytochemical study of neurohypophysial peptides during corticotropin maturation of infant rats, Cell Tissue Res. 201: 315–325.PubMedGoogle Scholar
  35. Burton, A. M., and Forsling, M. L., 1972, Hormone content of the neurohypophysis in foetal, newborn and adult guinea-pigs, J. Physiol. (Lond.) 221: 6P–7P.Google Scholar
  36. Butlen, D., Guillon, G., Canteau, B., and Jard, S., 1980, Comparison of the developmental patterns of vasopressin, glucagon and alpha-adrenergic receptors from rat-liver membranes, Mol. Cell. Endocrinol. 19: 275–289.PubMedGoogle Scholar
  37. Caffé, A. R., and Van Leeuwen, F. W., 1983, Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat, Cell Tissue Res. 233: 23–33.PubMedGoogle Scholar
  38. Cannata, M. A., and Tramezzani, J. H., 1977, Ultrastructural maturation of the neurohypophysis of the rat, Acta Anat. 97: 213–223.PubMedGoogle Scholar
  39. Castel, M., Gainer, H., Dellmann, H.-D., 1984, Developmental aspects of the hypothalamic-neuro-hypophysial system, Int. Rev. Cytol. 88: 304–459.Google Scholar
  40. Chatelain, A., and Dupuoy, J. P., 1981, Activity of the pituitary-adrenal system in rat fetuses subject to encephalectomy in early or late stages of pregnancy, Neuroendocrinology 33: 148–152.PubMedGoogle Scholar
  41. Choy, V. J., and Watkins, W. B., 1977, Immunocytochemical study of the hypothalamo-neurohypophysial system. II. Distribution of neurophysin, vasopressin and oxytocin in normal and osmotically stimulated rat, Cell Tissue Res. 189: 467–490.Google Scholar
  42. Choy, V. J., and Watkins, W. B., 1979, Maturation of the hypothalamo-neurohypophysial system. I. Localization of neurophysin, oxytocin and vasopressin in the hypothalamus and neural lobe of the developing rat brain, Cell Tissue Res. 197: 325–336.PubMedGoogle Scholar
  43. Collins, M. K. L., and Rozengurt, E., 1983, Vasopressin induces selective desensitization of its mitogenic response in Swiss 3T3 cells, Proc. Natl. Acad. Sci. U.S.A. 80: 1924–1928.PubMedGoogle Scholar
  44. Csaba, G., 1984, The present state in the phylogeny and ontogeny of hormone receptors, Horm. Metab. Res. 16: 329–335.PubMedGoogle Scholar
  45. Csaba, G., Rónai, A., Lászlo, V., Darvas, Z., and Berzétei, 1980, Amplification of hormone receptors by neonatal oxytocin and vasopressin treatment, Horm. Metab. Res. 12: 28–31.PubMedGoogle Scholar
  46. Czernichow, P., 1979, Vasopressin in fetal sheep: A review. J. Physiol. (Lond) 75: 33–36.Google Scholar
  47. Daniel, S. S., Stark, R. I., Zubrow, A. B., Fox, H. E., Husain, M. K., and James, L. S., 1983, Factors in the release of vasopressin by the hypoxic fetus, Endocrinology 113: 1623–1628.PubMedGoogle Scholar
  48. Danilova, O. A., 1971, Cholinesterase activity of the hypothalamo-hypophysial neurosecretory system in rats during the ontogenetic development, Histochemie 28: 255–264.PubMedGoogle Scholar
  49. Dawood, M. Y., Khan-Dawood, F. S., Ayromlooi, J., and Tobias, M., 1983, Maternal and fetal plasma oxytocin levels during pregnancy and parturition in sheep, Am J. Obstet. Gynecol. 147: 584–588.PubMedGoogle Scholar
  50. De Kloet, E. R., Voorhuis, Th. A. M, Burbach, J. P. H., and De Wied, D., 1985, Autoradiographic localization of binding sites for the arginine-vasopressin (VP) metabolite VP4–9 in rat brain, Neurosci. Lett. 56: 7–11.PubMedGoogle Scholar
  51. Dellmann, H.-D., 1973, Degeneration and regeneration of neurosecretory systems, Int. Rev. Cytol. 36: 215–315.PubMedGoogle Scholar
  52. Dellmann, H.-D., Castel, M., and Linner, J. G., 1978, Ultrastructure of peptidergic neurosecretory axons in the developing neural lobe of the rat, Gen. Comp. Endocrinol. 36: 477–486.PubMedGoogle Scholar
  53. Dellman, H.-D., Sikora, K. C., and Castel, M., 1981, Fine structure of the rat supraoptic nucleus and neural lobe during pre-and postnatal development, in: Neurosecretion, Molecules, Cells, Systems (D. S. Farner, and K. Lederis, eds.), pp. 177–186, Plenum Press, New York.Google Scholar
  54. Denizeau, F., Dubé, D., Antakly, T., Lemay, A., Parent, A., Pelletier, G., and Labrie, F., 1981, Attempts to demonstrate peptide localization and secretion in primary cell cultures of fetal rat hypothalamus, Neuroendocrinology 32: 96–102.PubMedGoogle Scholar
  55. De Vries, G. J., and Buijs, R. M., 1983, The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum, Brain Res. 273: 301–317.Google Scholar
  56. De Vries, G. J., Buijs, R. M., and Swaab, D. F., 1981, Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain—Presence of a sex difference in the lateral septum, Brain Res. 218: 67–78.PubMedGoogle Scholar
  57. De Vries, G. J., Best, W., and Sluiter, A. A., 1983, The influence of androgens on the development of a sex difference in the vasopressinergic innervation of the rat lateral septum, Dev. Brain Res. 8: 377–380.Google Scholar
  58. De Vries, G. J., Buijs, R. M., and Sluiter, A. A., 1984, Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain, Brain Res. 298: 141–145.PubMedGoogle Scholar
  59. De Vries, G. J., Buijs, R. M., Van Leeuwen, F. W., Caffé, A. R., and Swaab, D. F., 1985, The vasopressinergic innervation of the brain in normal and castrated rats, J. Comp. Neurol. 233: 236–254.Google Scholar
  60. Dlouhá, H., Křeček, J., and Zicha, J., 1977, Growth and urine osmolality in young Brattleboro rats, J. Endocrinol. 75: 329–330.PubMedGoogle Scholar
  61. Dlouhá, H., Křeček, J., and Zicha, J., 1982, Postnatal development and diabetes inspidus in Brattleboro rats, Ann. N. Y. Acad. Sci. 394: 10–20.PubMedGoogle Scholar
  62. Dogterom, J., Snijdewint, F. G. M, Pévet, P., and Swaab, D. F., 1980, Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommisural organ and fetal pituitary gland: Failure to demonstrate vasotocin in mammals, J. Endocrinol. 84: 115–123.PubMedGoogle Scholar
  63. Drucker-Colin, R., Aguilar-Roblero, R., Garcia-Hernández, F., Fernández-Cancino, F., and Bermudez Rattoni, F., 1984, Fetal suprachiasmatic nucleus transplants: Diurnal rhythm recovery of lesioned rats, Brain Res. 311: 353–357.PubMedGoogle Scholar
  64. Dunning, B. E., Moltz, J. H., and Fawcett, C. P., 1982, The effects of oxytocin and vasopressin on release of insulin and glucagon from pancreatic islets in vitro, Neuroendocrinol. Lett. 4: 89–93.Google Scholar
  65. Dupouy, J. P., and Chatelain, A., 1984, In-vitro effects of corticosterone, synthetic ovine corticotrophin releasing factor and arginine vasopressin on the release of adrenocorticotrophin by fetal rat pituitary glands, J. Endocrinol. 101: 339–344.PubMedGoogle Scholar
  66. Earnest, D. J., and Sladek, C. D., 1985, Circadian rhythms of vasopressin release from perfused rat suprachiasmatic expiants in vitro, in: Fifteenth Neuroscience Meeting, Dallas, TX (Abst. 115.6.)Google Scholar
  67. Eurenius, L., and Jarskär, R., 1974, Electron micoscopy of neurosecretory nerve fibres in the neural lobe of the embryonic mouse, Cell Tissue Res. 149: 333–347.PubMedGoogle Scholar
  68. Falk, G., 1955, Maturation of renal function in infant rats, Am. J. Physiol. 181: 157–170.PubMedGoogle Scholar
  69. Fellmann, D., Bloch, B., Bugnon, C., and Lenys, D., 1979, Etude immunocytologique de la maturation des axes neuroglandulaires hypothalamo-neurohypophysaires chez le foetus humain, J. Physiol. (Paris) 75: 37–43.Google Scholar
  70. Fink, G., and Smith, G. C., 1971, Ultrastructural features of the developing hypothalamo-hypophysial axis in the rat, Z. Zeilforsch. 119: 208–226.Google Scholar
  71. Fisher, A. W. F., Gill, V., Wong, K., Raghatvan, S., North, W., and Lederis, K., 1981, Anatomical and developmental aspects of the neurons terminating in the posterior pituitary, in: Neurosecretion, Molecules, Cells, Systems (D. S. Farner, and K. Lederis, eds.), pp. 39–47, Plenum Press, New York.Google Scholar
  72. Freemark, M., and Handwerger, S., 1984, Glycogenolytic effects of the calcium ionophore A23187, but not of vasopressin or angiotensin, in foetal rat hepatocytes, Biochem. J. 220: 441–445.PubMedGoogle Scholar
  73. Galabov, P., and Schiebler, T. H., 1978, The ultrastructure of the developing neural lobe, Cell Tissue Res. 189: 313–329.PubMedGoogle Scholar
  74. Gash, D. M, and Scott, D. E., 1980, Fetal hypothalamic transplants in the third ventricle of the adult rat brain, Cell Tissue Res. 211: 191–206.PubMedGoogle Scholar
  75. Gash, D. M., Collier, J. T. and Sladek, J. R., Jr., 1985, Neural transplantation: A review of recent developments and potential application to the aged brain, Neurobiol. Aging 6: 131–150.PubMedGoogle Scholar
  76. Gash, D. M., Sladek, C. D., and Scott, D. E., 1980a, Cytodifferentiation of the supraoptic nucleus correlated with vasopressin synthesis in the rat, Brain Res. 181: 345–355.PubMedGoogle Scholar
  77. Gash, D. M., Sladek, C. D., and Sladek, J. R., Jr., 1980b, A model system for analyzing functional development of transplanted peptidergic neurons, Peptides l (Suppl. 1):125-134.Google Scholar
  78. Gash, D. M., Sladek, J. R., Jr., and Sladek, C. D., 1980c, Functional development of grafted vasopressin neurons, Science 210: 1367–1369.PubMedGoogle Scholar
  79. Gash, D. M., Warren, P. H., Dick, L. B., Sladek, J. R., Jr., and Ison, J. R., 1982, Behavioral modification in Brattleboro rats due to vasopressin administration and neural transplantation, Ann. N.Y. Acad. Sci. 394: 672–681.PubMedGoogle Scholar
  80. Gash, D. M., Wiegand, S. J., Marciano, F. F., and Sladek, J. R., Jr., 1986, Plasticity of vasopressin neurons in fetal hypothalamic transplants, in: Fetal Neuroendocrinology (F. Ellendorff and P. D. Gluckman, eds.), pp. 71–82, Perinatology Press, Ithaca, N.Y.Google Scholar
  81. Glatz, T. H., Weitzmann, R. E., Eliot, R., Klein, A. H., Nathanielsz, P. W., and Fisher, D. A., 1981, Ovine maternal and fetal plasma oxytocin concentrations before and during parturition, Endocrinology 108: 1328–1332.PubMedGoogle Scholar
  82. Glydon, R. St. J., 1957, The development of the blood supply of the pituitary in the albino rat, with special reference to the portal vessels, J. Anat. 91: 237–244.PubMedGoogle Scholar
  83. Gracheva, N. D., and Danilova, O. A., 1978, Time of cell origin in mouse supraoptic nucleus, in: Neurosecretion and Neuroendocrine Activity (W. Bargmann, A. Oksche, A. Polenov, and D. Scharrer, eds.), pp. 79–84, Springer-Verlag, Berlin.Google Scholar
  84. Greer, E. R., Diamond, M. C., and Tang, J. W. H., 1982, Effect of age and enrichment on certain brain dimensions in Brattleboro rats deficient in vasopressin, Exp. Neurol. 75: 11–22.PubMedGoogle Scholar
  85. Hadeed, A. J., Leake, R. D., Weitzman, R. E., and Fisher, D. A., 1979, Possible mechanisms of high blood levels of vasopressin during the neonatal period, J. Pediatr. 94: 805–808.PubMedGoogle Scholar
  86. Handelmann, G. E., and Sayson, S. C., 1984, Neonatal exposure to vasopressin decreases vasopressin binding sites in the adult kidney, Peptides 5: 1217–1219.PubMedGoogle Scholar
  87. Handelmann, G. E., Russell, J. T., Gainer, H., Zerbe, R., and Bayorh, M., 1983, Vasopressin administration to neonatal rats reduces antidiuretic response to adult kidneys, Peptides 4: 827–832.PubMedGoogle Scholar
  88. Harvey, A. R., Minson, J. B., Morris, M. J., and Chalmers, J. P., 1984, Embryonic hypothalamic tissue transplanted to the IVth ventricle of newborn Brattleboro rats, Neurosci. Lett. 52: 269–274.PubMedGoogle Scholar
  89. Hems, D. A., and Whitton, P. D., 1980, Control of hepatic glycogenolysis, Physiol. Rev. 60: 1–50.PubMedGoogle Scholar
  90. Herin, P., Eklöf, A.-C., and Aperia, A., 1984, Role of arginine vasopressin in blood pressure control in young rats, Pediatr. Res. 18: 701–704.PubMedGoogle Scholar
  91. Hoorneman, E. M. D., and Buijs, R. M., 1982, Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning, Brain Res. 243: 235–241.PubMedGoogle Scholar
  92. Hunt, N. H., Perris, A. D., Sandford, P. A., 1977, Role of vasopressin in the mitotic response of rat bone marrow cells to haemorrhage, J. Endocrinol. 72: 5–16.PubMedGoogle Scholar
  93. Hyyppä, M., 1969, Differentiation of the hypothalamic nuclei during ontogenetic development in the rat, Z. Anat. Entwicklungsgesch. 129: 41–52.PubMedGoogle Scholar
  94. Ifft, J. D., 1972, An autoradiographic study of the time of final division of neurons in rat hypothalamic nuclei, J. Comp. Neurol. 144: 193–204.PubMedGoogle Scholar
  95. Ikeno, T., and Guroff, G., 1979, The effect of vasopressin on the activity of ornithine decarboxylase in rat brain and liver. J. Neurochem. 33: 973–975.PubMedGoogle Scholar
  96. Isler, H., 1974, Loss of mitotic response of the thyroid gland to TSH in hypophysectomized rats and its partial restoration by anterior and posterior pituitary hormones, Anat. Rec. 180: 369–376.PubMedGoogle Scholar
  97. Jasper, T. W., Luttge, W. G., Benton, T. B., and Garnica, A. D., 1982, Polyamines in the developing mouse brain, Dev. Neurosci. 5: 233–242.PubMedGoogle Scholar
  98. Jirikowski, G., Reisert, I., and Pilgrim, C., 1981, Neuropeptides in dissociated cultures of hypothalamus and septum: Quantitation of immunoreactive neurons, Neuroscience 6: 1953–1960.PubMedGoogle Scholar
  99. Karim, M. A., and Sloper, J. C., 1980, Histogenesis of the supraoptic and paraventricular neurosecretory cells of the mouse hypothalamus, J. Anat. 130: 341–347.PubMedGoogle Scholar
  100. Khachaturian, H., and Sladek, J. R., Jr., 1980, Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. III. Ontogeny of catecholamine varicosities and neurophysin neurons in the rat supraoptic and paraventricular nuclei, Peptides 1: 77–95.PubMedGoogle Scholar
  101. Kiernan, J. A., 1971, Pituicytes and the regenerative properties of neurosecretory and other axons in the rat, J. Anat. 109: 97–114.PubMedGoogle Scholar
  102. Kiessig, R., Wolf, G., and Dietzmann, K., 1983, Experimental hypo/hyperthyroidism in rats and the perinatal development of the hypothalamo-neurohypophysial system in comparison with the thyroid gland state and external features, Exp. Clin. Endocr. 81: 297–307.Google Scholar
  103. Kiss, J. Z., Mezey, E., and Skirboll, L., 1984, Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy, Proc. Natl. Acad. Sci. U.S.A. 81: 1854–1858.PubMedGoogle Scholar
  104. Koch, B., and Lutz-Bucher, B., 1985, Specific receptors for vasopressin in the pituitary gland: Evidence for down-regulation and desensitization to adrenocorticotropin-releasing factors, Endocrinology 116: 671–676.PubMedGoogle Scholar
  105. Koritsánszky, S., 1981, Fetal and early postnatal cyto-and synaptogenesis in the suprachiasmatic nucleus of the rat hypothalamus, Acta Morphol. Acad. Sci. Hung. 29: 227–239.PubMedGoogle Scholar
  106. Krisch, B., 1980a, Electron microscopic immunocytochemical investigation on the postnatal development of the vasopressin system in the rat, Cell Tissue Res. 205: 453–471.PubMedGoogle Scholar
  107. Krisch, B., 1980b, Immunocytochemistry of neuroendocrine systems, Prog. Histochem. Cytochem. 13: 1–160.PubMedGoogle Scholar
  108. Landgraf, R., Hess, J., and Ermisch, A., 1978, The influence of vasopressin on the regional uptake of (3H)orotic acid by rat brain, Acta Biol. Med. Ger. 37: 655–658.PubMedGoogle Scholar
  109. Lang, R. E., Rascher, W., Unger, T. H., and Ganten, D., 1981, Reduced content of vasopressin in the brain of hypertensive as compared to normotensive rats, Neurosci. Lett. 23: 199–204.PubMedGoogle Scholar
  110. Leclerc, R., and Pelletier, G., 1977, Ontogeny of neurophysin in the rat pituitary gland. An electron microscope immunohistochemical study, Brain Res. 129: 275–281.PubMedGoogle Scholar
  111. Lenn, N. J., Beebe, B., and Moore, R. Y., 1977, Postnatal development of the suprachiasmatic hypothalamic nucleus of the rat, Cell Tissue Res. 178: 463–475.PubMedGoogle Scholar
  112. Lester, B. R., Sheppard, J. R., Burman, M., Somkuti, S. B., and Stassen, F. L., 1985, Desensitization of LLC-PK1 cells by vasopressin results in receptor down-regulation, Mol. Cell. Endocrinol. 40: 193–204.PubMedGoogle Scholar
  113. Lutz-Bucher, B., and Koch, B., 1985, Reduced number of specific receptors for vasopressin in the neonatal pituitary gland fails to be associated with parallel changes in cell activity, Neuroendocrinol. Lett. 7: 67–72.Google Scholar
  114. Ma, R. C., and Dunn, N. J., 1985, Vasopressin depolarizes lateral horn cells of the neonatal rat spinal cord in vitro, Brain Res. 348: 36–43.PubMedGoogle Scholar
  115. Marciano, F. F., and Gash, D. M., 1986, Structural and functional relationships of grafted vasopressin neurons, Brain Res. 370: 338–342.PubMedGoogle Scholar
  116. Marciano, F. F., Gash, D. M., and Sladek, J. R., Jr., 1985, Transplanted vasopressin neurons: Structural and functional correlates, in: Neural Grafting in the Mammalian CNS (A. Björklund, and U. Stenevi, eds.), pp. 617–627, Elsevier, Amsterdam.Google Scholar
  117. Miller, R. P., Husain, F., Svensson, M., and Lohin, S., 1977, Enhancement of (3H-methyl) thymidine incorporation and replication of rat chondrocytes grown in tissue culture by plasma, tissue extracts and vasopressin, Endocrinology 100: 1365–1447.PubMedGoogle Scholar
  118. Möhring, J., Schoun, J., Kintz, J., Robinson, I. C. A. F., and McNeill, J. R., 1983, Vasopressin and oxytocin content are decreased in the brain stems of spontaneously hypertensive rats, Neuroendocrinology 36: 457–461.PubMedGoogle Scholar
  119. Monroe, B. G., and Paul, W. K., 1974, Ultrastructural changes in the hypothalamus during development and hypothalamic activity: The median eminence, Prog. Brain Res. 41: 185–208.PubMedGoogle Scholar
  120. Moore, R. Y., 1983, Organization and function of a central nervous system oscillator: The suprachiasmatic hypothalamic nucleus, Fed. Proc. 42: 2783–2789.PubMedGoogle Scholar
  121. Morris, M, Keller, M., Sundberg, D. K., 1983, Changes in paraventricular vasopressin and oxytocin during the development of spontaneous hypertension, Hypertension 5: 476–481.PubMedGoogle Scholar
  122. Nicholson, H. D., Swann, R. W., Burford, G. D., Wathes, D. C., Porter, D. G., and Pickering, B. T., 1984, Identification of oxytocin and vasopressin in the testis and in adrenal tissue, Reg. Peptides 8: 141–146.Google Scholar
  123. Nordmann, J. J., 1983, Stimulus-secretion coupling. Prog. Brain Res. 60: 281–304.PubMedGoogle Scholar
  124. Noto, T., Hashimoto, H., Doi, Y., Nakajima, T., and Kato, N., 1983, Biorhythm of arginine-vasopressin in the paraventricular, supraoptic and suprachiasmatic nuclei of rats, Peptides 4: 875–878.PubMedGoogle Scholar
  125. Notter, M. F. D., Gash, D. M, Sladek, C. D., and Scharoun, S. L., 1984, Vasopressin in reaggregated cell cultures of the developing hypothalamus, Brain Res. Bull. 12: 307–313.PubMedGoogle Scholar
  126. Okamura, H., Fukui, K., Koyama, E., Tsutou, H. L. O., Tsutou, T., Terubayashi, H., Fujisawa, H., and Ibata, Y., 1983, Time of vasopressin neuron origin in the mouse hypothalamus: Examination by combined technique of immunocytochemistry and [3H]thymidine autoradiography, Dev. Brain Res. 9: 223–226.Google Scholar
  127. Oosterbaan, H. P., and Swaab, D. F., 1986, Amniotic oxytocin and vasopressin in relation to human development and labour, in: Amniotic Oxytocin and Vasopressin in the Human and the Rat (H. P. Oosterbaan, ed.), pp. 87–110, University of Amsterdam, Amsterdam.Google Scholar
  128. Oosterbaan, H. P., Swaab, D. F., and Boer, G. J., 1985a, Oxytocin and vasopressin in the rat do not readily pass from the mother to the amniotic fluid in late pregnancy, J. Dev. Physiol. 7: 55–62.PubMedGoogle Scholar
  129. Oosterbaan, H. P., Swaab, D. F., and Boer, G. J., 1985b, Increased amniotic vasopressin levels in experimentally growth-retarded rat fetuses, J. Dev. Physiol. 7: 89–97.PubMedGoogle Scholar
  130. Patel, M. S., and Owen, O. E., 1977, Development and regulation of lipid synthesis from ketone bodies by rat brain, J. Neurochem. 28: 109–114.PubMedGoogle Scholar
  131. Pavel, S., 1975, Vasotocin biosynthesis by neurohypophyseal cells from human fetuses. Evidence for its ependymal origin, Neuroendocrinology 19: 150–159.PubMedGoogle Scholar
  132. Payet, N., and Lehoux, J.-G., A comparative study of the role of vasopressin and ACTH in the regulation of growth and function of rat adrenal glands, J. Steroid Biochem. 12: 461–467.Google Scholar
  133. Payet, N., Déziel, Y., and Lehoux, J.-G., 1984, Vasopressin: A potent growth factor in adrenal glomerulosa cells in culture, J. Steroid Biochem. 20: 449–454.PubMedGoogle Scholar
  134. Pearson, D. B., Goodman, R., and Sachs, H., 1975, Stimulated vasopressin synthesis by a fetal hypothalamic factor, Science 187: 1081–1082.PubMedGoogle Scholar
  135. Petracca, F. M., Baskin, D. G., Diaz, J., and Dorsa, D. M., 1986, Ontogenic changes in vasopressin binding site distribution in rat brain: An autoradiographic study, Dev. Brain Res. 28: 63–68.Google Scholar
  136. Pickering, B. T., and Jones, C. W., 1971, Isolation of radioactive oxytocin and vasopressin from the posterior pituitary gland of the rat after the injection of labeled tyrosine into the cerebrospinal fluid, J. Endocrinol. 49: 93–103.PubMedGoogle Scholar
  137. Pilgrim, Ch., 1967, Über die Entwicklung des Enzymmusters in den neurosekretorischen hypothalamischen Zentren der Ratte, Histochemie 10: 44–65.PubMedGoogle Scholar
  138. Pitzel, L., Lein, B., Scheffels, F., and König, A., 1982, Neurohypophyseal hormone content and release in fetal and newborn-rats, Neuroendocrinol. Lett. 4: 349–354.Google Scholar
  139. Pohjavuori, M., and Fyhrquist, F., 1980, Hemodynamic significance of vasopressin in the newborn infant, J. Pediatr. 97: 462–465.PubMedGoogle Scholar
  140. Rajerison, R. M., Butlen, D., and Jard, S., 1976, Ontogenic development of antidiuretic hormone receptors in rat kidney: Comparison of hormonal binding and denylate cyclase activation, Mol. Cell Endocrinol. 4: 271–285.PubMedGoogle Scholar
  141. Ravid, R., Oosterbaan, H. P., Hansen, B. L., and Swaab, D. F., 1986, Localisation of oxytocin, vasopressin and parts of precursors in the human neonatal adrenal, Histochemie 84: 401–407.Google Scholar
  142. Rees, L., Forsling, M. L., and Brook, L. G. D., 1980, Vasopressin concentrations in the neonatal period, Clin. Endocrinol. 12: 357–362.Google Scholar
  143. Reppert, S. M., 1985, Circadian rhythm of cerebrospinal fluid vasopressin: Characterization and physiology, in: Vasopressin (R. W. Schrier, ed.), pp. 455–464, Raven Press, New York.Google Scholar
  144. Reppert, S. M., and Schwartz, W. J., 1984, The suprachiasmatic nuclei of the fetal rat: Characterization of a functional circadian clock using 14C-labeled deoxyglucose, J. Neurosci. 7: 1677–1682.Google Scholar
  145. Robillard, J. E., Weitzman, R. E., Fisher, D. A., and Smith, F. G., Jr., 1979, The dynamics of vasopressin release and blood volume regulation during fetal hemorrhage in the lamb fetus, Pediatr. Res. 13: 606–610.PubMedGoogle Scholar
  146. Rozengurt, E., and Mendoza, S., 1980, Monovalent ion fluxes and the control of cell proliferation in cultured fibroblasts, Ann. NY. Acad. Sci. 339: 175–190.PubMedGoogle Scholar
  147. Rozengurt, E., Legg, A., and Pettican, P., 1979, Vasopressin stimulation of mouse 3T3 cell growth, Proc. Natl. Acad. Sei. U.S.A. 76: 1284–1287.Google Scholar
  148. Roy, C., Guillon, G., and Jard, S., 1976, Hormone-dependent desensitization of vasopressin-sensitive adenylate cyclase, Biochem. Biophys. Res. Commun. 72: 1265–1270.PubMedGoogle Scholar
  149. Russell, W. E., and Bucher, N. L. R., 1983, Vasopressin modulates liver regeneration in the Brattleboro rat, Am. J. Physiol. 245: 321–324.Google Scholar
  150. Sawaki, Y., Nihonmatsu, I., and Kawamura, H., 1984, Transplantation of the neonatal suprachiasmatic nuclei into rats with complete bilateral suprachiasmatic lesions, Neurosci. Res. 1: 67–72.PubMedGoogle Scholar
  151. Sawchenko, P. E., Swanson, L. W., and Vale, W. W., 1984, Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat, Proc. Natl. Acad. Sci. U.S.A. 81: 1883–1887.PubMedGoogle Scholar
  152. Scharoun, S. L., Gash, D. M., and Notter, M. F. D., 1984, In vitro and in vivo studies on development and regeneration of vasopressin neurons, Peptides 5: 157–167.PubMedGoogle Scholar
  153. Schlondorff, D., Weber, D., Trizna, W., and Fine, L. G., 1978, Vasopressin responsiveness of renal adenylate cyclase in newborn rats and rabbits, Am. J. Physiol. 234: 16–21.Google Scholar
  154. Schmale, H., Ivell, R., Breindl, M., Darmer, D., and Richter, D., 1984, The mutant vasopressin gene from diabetes insipidus (Brattleboro) rats is transcribed but the message is not efficiently translated, EMBO J. 3: 3289–3293.PubMedGoogle Scholar
  155. Schubert, F., George, J. M., and Rao, M. B., 1981, Vasopressin and oxytocin content of human fetal brain at different stages of gestation, Brain Res. 213: 111–117.PubMedGoogle Scholar
  156. Schwartz, W. J., and Reppert, S. M., 1985, Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: A pre-eminent role for the suprachiasmatic nuclei, J. Neurosci. 5: 2771–2778.PubMedGoogle Scholar
  157. Scott, D. E., and Sherman, D. M., 1984, Neuronal and neurovascular integration following transplantation of the fetal hypothalamus into the third cerebral ventricle of adult Brattleboro rats. Neurological transplants. I., Brain Res. Bull. 12: 453–467.PubMedGoogle Scholar
  158. Sherman, T. G., Akil, H., and Watson, S. J., 1985, Vasopressin mRNA expression: A northern and in situ hybridization analysis, in: Vasopressin (R. W. Schrier, ed.), pp. 475–483, Raven Press, New York.Google Scholar
  159. Shewey, L., Lornett, L. E., and Dorsa, D. M., 1985, Pharmacologie characterization of vasopressin receptors in the brain, liver and kidney of the Brattleboro rat, in: Fifteenth Annual Meeting, Society of Neuroscience, Dallas, TX. (Abst. 124.12.)Google Scholar
  160. Shibata, S., Liou, S. Y., and Ueki, S., 1983, Development of the circadian rhythm of neuronal activity in suprachiasmatic nucleus of rat hypothalamic slices, Neurosci. Lett. 43: 231–234.PubMedGoogle Scholar
  161. Shibata, S., Oomura, Y., Liou, S. Y., and Ueki, S., 1984, Electrophysiological studies of the development of suprachiasmatic neuronal activity in hypothalamic slice preparations, Dev. Brain Res. 13: 29–34.Google Scholar
  162. Shimada, M., and Nakamura, T., 1973, Time of neuron origin in mouse hypothalamic nuclei, Exp. Neurol. 41: 163–173.PubMedGoogle Scholar
  163. Sikora, K. C., and Dellmann, H. D., 1980, Pre-and postnatal synaptogenesis in the rat supraoptic nucleus, Peptides l (Suppl. l): 229–238.Google Scholar
  164. Silverman, A.-J., 1975, The hypothalamic magnocellular neurosecretory system of the guinea pig. II. Immunohistochemical localization of neurophysin and vasopressin in the fetus, Am. J. Anat. 144: 445–460.PubMedGoogle Scholar
  165. Silverman, A.-J., and Desnoyers, P. A., 1976, The hypothalamic magnocellular neurosecretory system of the guinea pig. III. Ultrastructure of the fetal neural lobe, Am. J. Anat. 145: 499–516.PubMedGoogle Scholar
  166. Silverman, A.-J., Goldstein, R., and Gadde, C. A., 1980, The ontogeny of neurophysin-containing neurons in the mouse hypothalamus, Peptides 1 (Suppl. l): 27–44.Google Scholar
  167. Sinding, C., Robinson, A. G., and Seif, S. M., 1980a, Levels of neurohypophyseal peptides in the rat during the first month of life. II. Response to physiological stimuli, Endocrinology 107: 755–760.Google Scholar
  168. Sinding, C., Seif, S. M., and Robinson, A. G., 1980b, Levels of neurohypophyseal peptides in the rat during the first month of life. I. Basal levels in plasma, pituitary, and hypothalamus, Endocrinology 107: 749–754.PubMedGoogle Scholar
  169. Sinding, C., Czernichow, P., Seif, S. M., and Robinson, A. G., 1980c, Quantitative changes in neuro-hypophyseal peptides in the developing brain, Peptides 1 (Suppl. l): 45–50.Google Scholar
  170. Sinding, C., Robinson, A. G., Seif, S. M., and Schmid, P. G., 1980d, Neurohypophyseal peptides in the developing rat fetus, Brain Res. 195: 177–186.PubMedGoogle Scholar
  171. Skowsky, W. R., and Fisher, D. A., 1977, Fetal neurohypophyseal arginine vasopressin and arginine vasotocin in man and sheep, Pediatr. Res. 11: 627–630.PubMedGoogle Scholar
  172. Sladek, C. D., Gash, D. M, Khachaturian, H., Scott, D. E., and Sladek, J. R., Jr., 1980, Maturation of the supraoptic nucleus: A multidisciplinary analysis, Peptides 1 (Suppl. 1): 51–67.Google Scholar
  173. Sladek, J. R., Jr., Gash, D. M. (eds.), 1984, Neural Transplants: Development and Function, Plenum Press, New York.Google Scholar
  174. Sladek, J. R., Jr., and Gash, D. M., 1984, Morphological and functional properties of transplanted vasopressin neurons, in: Neural Transplants: Development and Function (J. R. Sladek, Jr. and D. M. Gash, eds.), pp. 243–282, Plenum Press, New York.Google Scholar
  175. Sladek, J. R., Jr., Schöler, J., Notter, M. D., and Gash, M. D., 1982, Immunohistochemical analysis of vasopressin neurons transplanted into the Brattleboro rat, Ann. N. Y. Acad. Sci. 394: 102–114.PubMedGoogle Scholar
  176. Smith, A., and McIntosh, N. M., 1983, Neurohypophysial peptides in the human fetus: Presence in pituitary extracts of immunoreactive arginine-vasopressin, J. Endocrinol. 99: 441–445.PubMedGoogle Scholar
  177. Snijdewint, F. G. M., and Boer, G. J., 1986, Vasopressin and vasopressin-antagonists applied to neonatal Wistar rat: Effects on body and brain development and water metabolism, Neurobehav. Toxicol. Teratol 8: 213–217.PubMedGoogle Scholar
  178. Snijdewint, F. G. M., Boer, G. J., and Swaab, D. F., 1985, Body and brain growth following continuous perinatal administration of arginine-and lysine-vasopressin to the homozygous Brattleboro rat, Dev. Brain Res. 22: 269–277.Google Scholar
  179. Södersten, P., De Vries, G. J., Buijs, R. M., and Melin, P., 1985, A daily rhythm in behavioral vasopressin sensitivity and brain vasopressin concentrations, Neurosci. Lett. 58: 37–41.PubMedGoogle Scholar
  180. Sokol, H. W., and Sise, J., 1973, The effects of exogenous vasopressin and growth hormone on the growth of rats with hereditary hypothalamic diabetes insipidus, Growth 37: 127–142.PubMedGoogle Scholar
  181. Stark, R. I., Daniel, S. S., Husain, M. K., Sanocka, U. M., Zubrow, A. B., and James, L. S., 1984, Vasopressin concentration in amniotic fluid as an index of fetal hypoxia: Mechanism of release in sheep, Pediatr. Res. 18: 552–558.PubMedGoogle Scholar
  182. Sugden, M. C., and Williamson, D. H., 1981, Short-term hormonal control of ketogenesis, in: Short-Term Regulation of Liver Metabolism (L. Hue and G. van de Werve, eds.), pp. 291–309, Elsevier, Amsterdam.Google Scholar
  183. Suzue, T., Yanaihara, N., and Otsuka, M., 1981, Actions of vasopressin, gastrin releasing peptide and other peptides on neurons of newborn rat spinal cord in vitro, Neurosci. Lett. 26: 137–142.PubMedGoogle Scholar
  184. Swaab, D. F., 1982, Neuropeptides. Their distribution and function in the brain, Prog. Brain Res. 55: 97–122.PubMedGoogle Scholar
  185. Swaab, D. F., and Oosterbaan, H. P., 1983, Exclusion of the fetal brain as the main source of rat and human amniotic fluid oxytocin, Br. J. Obstet. Gynaecol. 90: 1160–1167.PubMedGoogle Scholar
  186. Swaab, D. F., and Ter Borg, J. P., 1981, Development of peptidergic systems in the rat brain. Ciba Foundation Symp. 86: 271–294.Google Scholar
  187. Swaab, D. F., Nijveldt, F., and Pool, C. W., 1975a, Distribution of oxytocin and vasopressin in the rat supraoptic and para ventricular nucleus, J. Endocrinol. 67: 461–462.PubMedGoogle Scholar
  188. Swaab, D. F., Nijveldt, F., and Pool, C. W., 1975b, Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophyseal system, J. Nenrol. Transm. 36: 195–215.Google Scholar
  189. Swaab, D. F., Boer, G. J., Boer, K., Dogterom, J., Van Leeuwen, F. W., and Visser, M., 1978, Fetal neuroendocrine mechanisms in development and parturition, Prog. Brain Res. 48: 277–289.PubMedGoogle Scholar
  190. Swaab, D. F., Boer, G. J., Boer, K., Oosterbaan, H. P., and Oosting, P. R., 1982, Neurohypophysial and intermediate lobe peptides in intrauterine growth and labour, in: Neuroendocrinology of Vasopressin: Corticoliberin and Opiomelanocortins (A. J. Baertschi and J. J. Dreifuss, eds.), pp. 343–352, Academic, New York.Google Scholar
  191. Swanson, L. W., and Sawchenko, P. E., 1980, Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanism, Neuroendocrinology 31: 410–417.PubMedGoogle Scholar
  192. Swanson, L. W., Sawchenko, P. E., Wiegand, S. J., and Price, J. L., 1980, Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord, Brain Res. 198: 190–195.PubMedGoogle Scholar
  193. Szabó, K., and Csányi, K., 1982, The vascular architecture of the developing pituitary-median eminence complex in the rat, Cell Tissue Res. 224: 563–577.PubMedGoogle Scholar
  194. Tankosic, P., Burlet, A., Jegou, S., Chateau, S., Vaudry, M., Burlet, C., and Boulangé, M., 1982, Fetal and potential maturation of corticotrope function in the vasopressin-deficient rat (Brattleboro strain): A radioimmunological and morphometric study, Ann. N.Y. Acad. Sci. 394: 560–573.PubMedGoogle Scholar
  195. Tixier-Vidal, A., and De Vitry, F., 1979, Hypothalamic neurons in cell culture, Int. Rev. Cytol. 58: 291–331.PubMedGoogle Scholar
  196. Toran-Allerand, C. D., 1985, On the genesis of sexual differentiation of the central nervous system: Morphogenetic consequences of steroidal exposure and possible role of alpha-fetoprotein, Prog. Brain Res. 61: 63–98.Google Scholar
  197. Ugrumov, M. V., and Mitskevich, M. S., 1981, Interrelation between neural elements and tanycytes during the perinatal period of the rat, Cell Tissue Res. 215: 635–643.PubMedGoogle Scholar
  198. Uhl, G. R., 1985, Quantitative in situ hybridization of vasopressin and somatostatin mRNA distributions and dynamics, in: Fifteenth Annual Meeting of the Society of Neuroscience, Dallas, TX. (Abst. 46.4.)Google Scholar
  199. Uylings, H. B. M., and Van Norde, W., 1986, Impaired development of individual cerebellar lobules in the diabetes insipidus Brattleboro rat, Dew Brain Res. 26: 293–300.Google Scholar
  200. Vale, W., Spiess, J., Rivier, C., and Rivier, J., 1981, Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and alpha-endorphin, Science 213: 1394–1397.PubMedGoogle Scholar
  201. Valtin, H., and Schroeder, H. A., 1964, Familial hypothalamic diabetes insipidus in rats (Brattleboro strain), Am. J. Physiol. 206: 425–430.PubMedGoogle Scholar
  202. Vandesande, F., Dierickx, K., and De Mey, J., 1975, Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei, Cell Tissue Res. 156: 377–380.PubMedGoogle Scholar
  203. Vandesande, F., Dierickx, K., and De Mey, J., 1977, The origin of the vasopressinergic and oxytocinergic fibers of the external region of the median eminence of the rat hypophysis, Cell Tissue Res. 180: 443–452.PubMedGoogle Scholar
  204. Van der Sluis, P. J., Boer, G. J., and Swaab, D. F., 1986, Vasopressin and oxytocin in the developing rat brain as shown by isoelectric focusing of radioimmunoassayable peptides, Dev. Brain Res. 26: 85–90.Google Scholar
  205. Van Leeuwen, F. W., and Caffé, A. R., 1983, Vasopressin-immunoreactive cell bodies in the bed nucleus of the stria terminalis of the rat cell, Cell Tissue Res. 228: 525–534.PubMedGoogle Scholar
  206. Van Leeuwen, F. W., Caffé, A. R., and De Vries, G. J., 1985, Vasopressin cells in the bed nucleus of the stria terminalis of the rat: Sex differences and the influence of androgens, Brain Res. 325: 391–394.PubMedGoogle Scholar
  207. Van Tol, H. H. M., Snijdewint, F. G. M., Boer, G. J., and Burbach, J. P. H., 1986a, Postnatal development of vasopressin mRNA content of supraoptic and paraventricular nucleus of the Wistar rat, Neurose. Lett. 65: 1–6.Google Scholar
  208. Van Tol, H. H. M., Voorhuis, Th. A. M., Snijdewint, F. G. M., Boer, G. J., and Burbach, J. P. H., 1986b, Vasopressin gene expression is attenuated in the fetal Brattleboro rat, FEBS Letters 204: 101–105.PubMedGoogle Scholar
  209. Van Tol, H. H. M., Snijdewint, F. G. M., Boer, G. J., and Burbach, J. P. H., 1987, Hypothalamic oxytocin and vasopressin mRNA during development of the Brattleboro and Wistar rat, Endocrinology. Submitted for publication.Google Scholar
  210. Vizsokyi, E., and Perks, A. M., 1969, New neurohypophysial principles in foetal mammals, Nature (Lond.) 223: 1169–1171.Google Scholar
  211. Walsh-Reitz, M. M., and Toback, F. G., 1983, Vasopressin stimulates growth of renal epithelial cells in culture, Am. J. Physiol. 245: 365–370.Google Scholar
  212. Wathes, D. G., 1984, Possible actions of gonadal oxytocin and vasopressin, J. Reprod. Fertil. 71: 315–345.PubMedGoogle Scholar
  213. Watkins, W. B., and Choy, V. J., 1979, Maturation of the hypothalamo-neurohypophysial system. II. Neurophysin, vasopressin and oxytocin in the median eminence of the developing rat brain, Cell Tissue Res. 197: 337–346.PubMedGoogle Scholar
  214. Weitzman, R. E., Fisher, D. E., Robillard, J. E., Erenberg, A. Kennedy, R., and Smith, F. G., Jr., 1978, Arginine vasopressin response to an osmotic stimulus in the fetal sheep, Pediatr. Res. 12: 35.PubMedGoogle Scholar
  215. Whitfield, J. F., MacManus, J. P., and Gillan, D. J., 1970, The possible mediation by cyclic AMP of the stimulation of thymocyte proliferation by vasopressin and the inhibition of this mitogenic action by thyrocalcitonin, J. Cell Physiol. 76: 65–76.PubMedGoogle Scholar
  216. Whitnall, M. H., Key, S., Ben-Barak, Y., Ozato, K., and Gainer, H., 1985, Neurophysin in the hypothalamo-neuropophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons, J. Neurosci. 5: 98–109.PubMedGoogle Scholar
  217. Wiegand, S. J., and Price, J. L., 1980, Cells of origin of the afferent fibers to the median eminence in the rat, J. Comp. Neurol. 192: 1–19.PubMedGoogle Scholar
  218. Wolf, G., and Trautmann, B., 1977, Ontogeny of the hypothalamo-neurohypophysial system in rats— An immunohistochemical study, Endokrinologie 69: 222–226.PubMedGoogle Scholar
  219. Wolf, G., Keilhoff, G., and Kuhne, H., 1981, Neurohypophyseal proteins during the ontogenesis of the rat: A microelectrophoretic study, Endokrinologie 78: 149–155.PubMedGoogle Scholar
  220. Wolf, G., Kiessig, R., and Landgraf, R., 1984, Levels of vasopressin and oxytocin in neurohypophysis and plasma of the postnatally developing rat and the influence of hypothyroidism on rat fetuses, Exp. Clin. Endocrinol. 83: 251–255.PubMedGoogle Scholar
  221. Worley, R. T. S., and Pickering, B. T., 1984, Non-neuronal cells of rat hypothalamus in dissociated cell culture, Cell Tissue Res. 237: 161–168.PubMedGoogle Scholar
  222. Wright, W. A., and Kutscher, C. L., 1977, Vasopressin administration in the first month of life: Effects on growth and water metabolism in the hypothalamic diabetes insipidus rats, Pharmacol. Biochem. Behav. 6: 505–509.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • G. J. Boer
    • 1
  1. 1.Netherlands Institute for Brain ResearchAmsterdam ZOThe Netherlands

Personalised recommendations