Vasopressin pp 579-610 | Cite as

Aging of Rodent Vasopressin Systems

Morphometric and Functional Considerations
  • Paul F. Aravich
  • John R. SladekJr.


Vasopressin (VP), a classic peptide in neuroendocrinology, has several well-documented actions. Among these, the best characterized are related to the kidney and vasculature (Heller, 1974), the anterior pituitary (Rivier and Vale, 1985), and the liver (Hems and Whitton, 1980; Rofe and Williamson, 1983). Recent data suggest, however, that VP may have a considerably more diversified functional significance, which may be particularly relevant to aging. For instance, age-related alterations in VP function may compromise the adaptive responses to several pathological conditions affecting the elderly, including orthostatic hypotension (Robertson and Rowe, 1980), diabetes mellitus (Walsh et al., 1979; Zerbe et al., 1979), alcohol intolerance (Ritzmann and Tabakoff, 1984), arthritis (Millan et al., 1985), and altered immune function (Clements and Funder, 1986; Whitfield et al., 1970). Perturbations of the action of VP on adrenocorticotropic hormone (ACTH) secretion (Plotsky et al., 1985), as well as on preganglionic (Backman and Henry, 1984) and postganglionic (Bone et al., 1984; Peters and Kreulen, 1985) sympathetic neuron activity, also may contribute to the altered stress responses that occur during aging (e.g., Benzi et al., 1984; Chiueh et al., 1980; McCarty, 1984; Sapolsky and Donnelly, 1985). Finally, alterations in nutritional intake during senescence (e.g., Morrison, 1983) may be related, in part, to altered VP function. For instance, VP has been related to stress-induced feeding and carbohydrate appetite (Aravich and Sladek, 1986) and to the physiological response to malnutrition (Gold et al., 1983; Hansen et al., 1985).


Median Eminence Magnocellular Neuron Postprandial Hypotension Noradrenergic Innervation Supraoptic Hypothalamic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altura, B. M., and Altura, B. T., 1977, Vascular smooth muscle and neurohypophysial hormones, Fed. Proc. 36: 1853–1860.PubMedGoogle Scholar
  2. Amico, J. A., Tenicela, R., and Robinson, A. G., 1985, Neurohypophysial hormones in cerebrospinal fluid of adults: Absence of arginine vasotocin and a diurnal rhythm of argine vasopressin, J. Clin, Endocrinol. Metab. 61: 794–798.Google Scholar
  3. Aravich, P. F., and Sladek, C. D., 1983, Deficiencies in hypothalamic hyperphagia, norepinephrineinduced feeding, and glucopyrivic feeding in Brattleboro rats lacking vasopressin, Soc. Neurosci, Abs. 9:185.Google Scholar
  4. Aravich, P. F., and Sladek, C. D., 1986, Vasopressin and glucopyrivic-feeding behavior: A new perspective on an “old” peptide, Brain Res. 385: 245–252.PubMedGoogle Scholar
  5. Aravich, P. F., Sladek, C. D., and Forbes, G. B., 1984, The dietary obesity syndrome and vasopressin secretion, Soc. Neurosci. Abs. 10: 651.Google Scholar
  6. Aravich, P. F., Davis, B. J., Sladek, C. D., Feiten, S. Y., Feiten, D. L., and Sladek, J. R., Jr., 1986a, Vasopressin in the gut: Neural and immune systems?, Anat. Rec. 214: 5A (Abstr.).Google Scholar
  7. Aravich, P. F., Sladek, C. D., Forbes, G. B., and Gallagher, M. J., 1986b, High-fat, high-sucrose feeding and exercise: Relationship to vasopressin and oxytocin, Soc. Neurosci. Abs. 12: 447.Google Scholar
  8. Aravich, P. F., Silverman, W. F., Sladek, C. D., Feiten, S. Y., Feiten, D. L., and Sladek, J. R., 1987, Aging and water deprivation alter vasopressin content in lymphoid tissue and gut, Soc. Neurosci. Abs. (submitted).Google Scholar
  9. Axelrod, L., Minnich, A. K., and Ryan, C. A., 1985, Stimulation of prostacyclin production in isolated rat adipocytes by angiotensin II, vasopressin, and bradykinin: Evidence for two separate mechanisms of prostaglandin synthesis, Endocrinology 116: 2548–2553.PubMedGoogle Scholar
  10. Backman, S. B., and Henry, J. L., 1984, Effects of vasopressin and oxytocin on thoracic sympathetic preganglionic neurons in the cat, Brain Res. 13: 679–684.Google Scholar
  11. Balla, T., Enyedi, P., Spat, A., and Antoni, F. A., 1985, Pressor-type vasopressin in the adrenal cortex: Properties of binding, effects of phospoinositide metabolism and aldosterone secretion, Endocrinology 117: 421–423.PubMedGoogle Scholar
  12. Baylis, P. H., and Robertson, G. L., 1980, Rat vasopressin response to insulin-induced hypoglycemia, Endocrinology 107: 1975–1979.PubMedGoogle Scholar
  13. Beck, N., and Yu, B. P., 1982, Effect of aging on urinary concentrating mechanism and vasopressindependent cAMP in rats, Am. J. Physiol. 243: F121–F125.PubMedGoogle Scholar
  14. Bengele, H. H., Mathias, R. S., Perkins, J. H., and Alexander, E. A., 1981, Urinary concentrating defect in the aged rat, Am. J. Physiol. 240: F147–F150.PubMedGoogle Scholar
  15. Benzi, G., Pastoris, O., Villa, R. F., and Giuffrida, A. M., 1984, Effect of aging on cerebral cortex energy metabolism in hypoglycemia and posthypoglycemic recovery, Neurobiol. Aging 5: 205–212.PubMedGoogle Scholar
  16. Blanchard, B. C., Aravich, P. F., and Sladek, J. R., Jr., 1985, Ontogeny of peptide-monoamine interactions in the Brattleboro rat: Effects of systemic vasopressin replacement, Soc. Neurosci. Abs. 11: 66.Google Scholar
  17. Bodanszky, M., and Engel, S. L., 1966 Oxytocin and the life-span of male rats, Nature (Lond.) 210: 751.Google Scholar
  18. Boer, G. J., 1985, Vasopressin and brain development: Studies using the Brattleboro rat, Peptides 6:(suppl) 2: 49–62.PubMedGoogle Scholar
  19. Boer, G. J., Kragten, R., Kruisbrink, J., and Swaab, D. F., 1984, Vasopressin fails to restore postnatally the stunted brain development in the Brattleboro rat, but affects water metabolism permanently, Neurobehav. Toxicol. 6: 103–109.Google Scholar
  20. Bone, E. A., Fretten, P., Palmer, S., Kirk, C. J., and Michell, R. H., 1984, Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to VL-vasopressin and muscarinic cholinergic stimuli, Biochem. J. 221: 803–811.PubMedGoogle Scholar
  21. Chiueh, C. C., Nespor, S. M., and Rapoport, S. I., 1980, Cardiovascular, sympathetic and adrenal cortical responsiveness of aged Fischer-344 rats to stress, Neurobiol. Aging 1: 157–163.Google Scholar
  22. Clements, J. A., and Funder, J. W., 1986, Arginine vasopressin (AVP) and AVP-like immunoreactivity in peripheral tissues, Endocr. Revs. 7: 449–460.Google Scholar
  23. Colbern, D. L., ven Haaf, J., Tabakoff, B., and van Wimersma Greidanus, T. B., 1985, Ethanol increases plasma vasopressin shortly after intraperitoneal injection in rats, Life Sci. 37: 1029–1032.PubMedGoogle Scholar
  24. Cowley, A. W., Jr., Skelton, M. M., and Velasquez, M. T., 1985, Sex differences in the endocrine predictors of essential hypertension. Vasopressin versus Renin, Hypertension 7: 1151–1160.Google Scholar
  25. Crofton, J. T., Baer, P. G., Share, L., and Brooks, D. P., 1985, Vasopressin release in male and female rats: Effects of gonadectomy and treatment with gonadal steroid hormones, Endocrinology 117: 1195–1200.PubMedGoogle Scholar
  26. Davies, I., 1983, Influence of age on the hypothalamo-neurohypophysial system, Ageing 21: 153–178.Google Scholar
  27. Davies, I., Fotheringham, P., and Roberts, C., 1984, The effect of osmotic challenge and subsequent rehydration on the aging hypothalamo-neurohypophysial system. A quantitative morphological study of the supraoptic nucleus, Mech. Ageing Dev. 26: 299–310.PubMedGoogle Scholar
  28. Davies, I., Goddard, C., Fotheringham, A. P., Moser, B., and Faragher, E. B., 1985, The effect of age on the control of water conservation in the laboratory mouse-metabolic studies, Exp. Gerontol. 20: 53–66.PubMedGoogle Scholar
  29. Davis, B. J., Sokol, H. W., and Sladek, J. R., Jr., 1985, Altered catecholamine innervation of the supraoptic nucleus in the nephrogenic diabetes insipidus mouse, Neuroendocrinology 41: 394–399.PubMedGoogle Scholar
  30. De Vries, G. J., and Buijs, R. M., 1983, The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum, Brain Res. 273: 307–317.PubMedGoogle Scholar
  31. De Vries, G. J., Buijs, R. M., Van Leeuwen, F. W., Cafe, A. R., and Swaab, D. F., 1985, The vasopressinergic innervation of the brain in normal and castrated rats. A J. Comp. Neurol. 233: 236–254.Google Scholar
  32. Dorsa, D. M., and Bottemiller, L., 1982, Age-related changes of vasopressin content of microdissected areas of the rat brain, Brain Res. 242: 151–156.PubMedGoogle Scholar
  33. Dunning, B. E., Moltz, J. H., and Fawcett, C. P., 1984, Modulation of insulin and glucagon secretion from the perfused rat pancreas by the neurohypophysial hormones and by desamino-D-arginine vasopressin (DDAVP), Peptides 5: 871–875.PubMedGoogle Scholar
  34. Euler von, U.S., 1983, History and development of prostaglandins, Gen. Pharmacol. 14: 3–6.Google Scholar
  35. Fagin, K. D., Wiener, S. G., and Dallman, M. F., 1985, ACTH and corticosterone secretion in rats following removal of the neurointermediate lobe of the pituitary gland, Neuroendocrinology 40: 352–362.PubMedGoogle Scholar
  36. Finch, C. E., Felicio, L. S., Flurkey, K., Gee, G. M., Mobbs, C., Nelson, J. F., and Osterburg, H. H., 1980, Studies on ovarian-hypothalamic-pituitary interactions during reproductive aging in C57BL/6J mice, Peptides 1 (Suppl. 1): 163–175.Google Scholar
  37. Fliers, E., and Swaab, D. F., 1983, Activation of vasopressinergic and oxytocinergic neurons during aging in the Wistar rat, Peptides 4: 165–170.PubMedGoogle Scholar
  38. Fliers, E., De Vries, G. J., and Swaab, D. F., 1985, Changes with aging in the vasopressin and oxytocin innervation of the rat brain, Brain Res. 348: 1–8.PubMedGoogle Scholar
  39. Friedman, P. J., Campbell, A. J., and Caradoc-Davies, T. H., 1985, Prospective trial of a new diagnostic criterion for severe wasting malnutrition in the elderly, Age Ageing 14: 149–154.PubMedGoogle Scholar
  40. Friedman, S. M., and Friedman, C. L., 1957, Salt and water balance and ageing, rats, Gerontologia 1: 107–121.PubMedGoogle Scholar
  41. Friedman, S. M., and Friedman, C. L., 1963, Effect of posterior pituitary extracts on the life-span of old rats, Nature (Lond.) 200: 237–238.Google Scholar
  42. Friedman, S. M., Freidman, C. L., and Nakashima, M., 1960, Effect of Pitressin on old-age changes of salt and water metabolism in the rat, Am. J. Physiol. 199: 35–38.PubMedGoogle Scholar
  43. Frolkis, V. V., Golovchenko, S. F., Medved, V. I., and Frolkis, R. A., 1982, Vasopressin and cardiovascular system in aging, Gerontology 28: 290–302.PubMedGoogle Scholar
  44. Fuller, P. J., Clements, J. A., Tregear, G. W., Nikolaidis, I., Whitfeld, P. L., and Funder, J. W., 1985, Vasopressin-neurophysin II gene expression in the ovary: Studies in Sprague-Dawley, Long-Evans and Brattleboro rats, J. Endocrinol. 105: 317–321.PubMedGoogle Scholar
  45. Gibson, G. E., Peterson, C., and Sansone, 1981, Neurotransmitter and carbohydrate metabolism during aging and mild hypoxia, Neurobiol. Aging 2: 165–172.PubMedGoogle Scholar
  46. Gold, P. W., Kaye, W., Robertson, G. L., and Ebert, M., 1983, Abnormalities in plasma and cerebropinal-fluid arginine vasopressin in patients with anorexia nervosa, N. Engl. J. Med. 308: 1117–1123.PubMedGoogle Scholar
  47. Goldman, G., and Coleman, P. D., 1981, Neuron numbers in locus coeruleus do not change with age in Fischer 344 rat, Neurobiol. Aging 2: 33–36.PubMedGoogle Scholar
  48. Groblewski, T. A., Nunez, A. A., and Gold, R. M., 1981, Circadian rhythms in vasopressin deficient rats, Brain Res. Bull. 6: 125–130.PubMedGoogle Scholar
  49. Hansen, H. S., Jensen, B., and Warberg, J., 1985, Increased concentration of vasopressin in plasma of essential fatty acid-deficient rats, Nutr. Rev. 5: 395–403.Google Scholar
  50. Harrison, D. E., Archer, J. R., and Astle, C. M., 1984, Effects of food restriction on aging: Separation of food intake and adiposity, Proc. Natl. Acad. Sci. U.S.A. 81: 1835–1838.PubMedGoogle Scholar
  51. Hartford, J. T., and Samorajski, T., eds., 1984, Alcoholism in the Elderly: Social and Biochemical Issues, Aging, Vol. 25, Raven, New York.Google Scholar
  52. Heller, H., 1974, History of neurohypophysial research, in: The Pituitary Gland and Its Neuroendocrine Control, Part I: Handbook of Physiology, Section 7, Endocrinology, Vol. IV (R. O. Greep and E. B. Astwood, eds.), pp. 103–117, American Physiological Society, Washington, D.C.Google Scholar
  53. Hemmendiger, L. M., Garber, B. B., Hoffman, P. C., and Heller, A., 1981, Target neuron-specific process formation by embryonic mesencephalic dopamine neurons ian vitro, Proc. Natl. Acad. Sci. U.S.A. 78: 1264–1268.Google Scholar
  54. Hems, D. A., and Whitton, P. D., 1980, Control of hepatic glycogenolysis, Physiol. Rev. 60: 1–50.PubMedGoogle Scholar
  55. Hiwatari, M., Nolan, P. L., and Johnston, C. I., 1985, The contribution of vasopressin and angiotensin to the maintenance of blood pressure after autonomie blockade, Hypertension 7: 547–553.PubMedGoogle Scholar
  56. Hollander, D., and Dadufalza, V. D., 1983, Increased intestinal absorption of oleic acid with aging in the rat, Exp. Gerontol. 18: 287–292.PubMedGoogle Scholar
  57. Howes, L. G., and Summers, R. J., 1985, Changes in brainstem and spinal adrenoreceptor binding with aging in spontaneously hypertensive and Wistar-Kyoto rats, Neurosci. Lett. 57: 247–250.PubMedGoogle Scholar
  58. Hsu, H. K., and Peng, M. T., 1978, Hypothalamic neuron number of old female rats, Gerontol. 24: 434–440.Google Scholar
  59. Janaky, T., Laszlo, F. A., Sirokman, F., and Morgat, J.-L., 1982, Biological half-life and organ distribution of [3H]8-arginine vasopressin in the rat, J. Endocrinol. 93: 295–303.PubMedGoogle Scholar
  60. Joint National Committee, 1985, Hypertension prevalence and the status of awareness, treatment, and control in the United States: Final Report of the Subcommittee on Definition and Prevalence (1984), Hypertension 7: 457–468.Google Scholar
  61. Jones, P. G., Kauffman, C. A., Bergman, A. G., Hayes, C. M., Kluger, M. J., and Cannon, J. G., 1984, Fever in the elderly, Gerontology 30: 182–187.PubMedGoogle Scholar
  62. Kai-Kai, M. A., Swann, R. W., and Keen, P., 1985, Localization of chromatographically characterized oxytocin and arginine-vasopressin to sensory neurons in the rat, Neurosci. Lett. 55: 83–88.PubMedGoogle Scholar
  63. Kappy, M., Sellinger, S., and Raizada, M., 1984, Insulin binding in four regions of the developing rat brain, J. Neurochem 42: 198–203.PubMedGoogle Scholar
  64. Kawamoto, K. and Kawashima, S., 1985, Plasticity of vasopressin-and oxytocin-containing fibers in the median eminence in hypophysectomized young and old mice, Brain Res. 330: 189–193.PubMedGoogle Scholar
  65. Knepel. W., Nutto, D., Vlaskovska, M., and Kittel, Ch., 1985, Inhibition by prostaglandin E2 of the release of vasopressin and B-endorphin from rat pituitary neurointermediate lobe or medial basal hypothalamus in vitro, J. Endocrinol. 106: 189–195.PubMedGoogle Scholar
  66. Kobayashi, Y., and Kawashima, S., 1984, Age-related changes in the water and electrolyte metabolism in male rats of the Wistar/Tw strain, Exp. Gerontol. 19: 107–113.PubMedGoogle Scholar
  67. Landfield, P. W., Sundberg, D. K., Smith, M. S., Eldridge, J. C., and Morris, M., 1980, Mammalian aging: Theoretical implications of changes in brain and endocrine systems during mid-and latelife in rats, Peptides l(Suppl. 1):185-196.Google Scholar
  68. Levi-Montalcini, R., 1983, The nerve growth factor-target cells interaction: A model system for the study of directed axonal growth and regeneration, Birth Defects 19(4): 3–32.PubMedGoogle Scholar
  69. Lightman, S., Forsling, M., and Todd, K., 1983, Hypothalamic integration of dopaminergic and opiate pathways controlling vasopressin secretion, Endocrinology 112: 77–80.Google Scholar
  70. Lipsitz, L. A., Nyquist, R. P., Wei, J. Y., and Rowe, J. W., 1983, Postprandial reduction in blood pressure in the elderly, N. Engl. J. Med. 309: 81–83.PubMedGoogle Scholar
  71. Martin, J. R., Fuchs, A., and Halting, J., 1985, Drinking by senescent and adult rats in response to regulatory challenges, Neurobiol. Aging 6: 51–59.Google Scholar
  72. McCarty, R., 1984, Effects of 2-deoxyglucose on plasma catecholamines in adult and aged rats, Neurobiol. Aging 5: 285–289.PubMedGoogle Scholar
  73. McNeill, T. H., and Sladek, J. R., Jr., 1980, Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. II. Correlative distribution of catecholamine varicosities and magnocellular neurosecretory neurons in the rat supraoptic and paraventricular nuclei. J. Comp. Neurol. 193: 1023–1033.PubMedGoogle Scholar
  74. Meidan, R., and Hsueh, A. J. W., 1985, Identification and characterization of arginine vasopressin receptors in the rat testis, Endocrinology 116: 416–423.PubMedGoogle Scholar
  75. Millan, M. J., Millan, M. H., and Herz, A., 1985, Chronic arthritis in the rat: Differential changes in discrete brain pools of vasopressin as compared to oxytocin, Neurosci. Lett. 54: 33–37.PubMedGoogle Scholar
  76. Miller, M., 1985, Influence of aging on vasopressin secretion and water regulation, in: Vasopressin (R. W. Schrier, ed.). pp. 249–258, Raven, New York.Google Scholar
  77. Miller, M. A., and Dorsa, D. M., 1985, Age-related changes of vasopressin receptors in the rat, Soc. Neurosci. Abs. 11:417.Google Scholar
  78. Mogensen, C. E., Christensen, N. J., and Gundersen, H. J. G., 1980, The acute effect of insulin on heart rate, blood pressure, plasma noradrenaline and urinary albumin excretion, Diabetologia 18: 453–457.PubMedGoogle Scholar
  79. Morrison, S. D., 1983, Nutrition and Longevity, Nutr. Rev. 41: 133–142.PubMedGoogle Scholar
  80. Nussey, S. S., Ang, V. T. Y., Jenkins, J. S., Chowdrey, H. S., and Bisset, G. W., 1984, Brattleboro rat adrenal contains vasopressin, Nature (Lond.) 310: 64–66.Google Scholar
  81. Peng, M. T., and Hsu, H. K., 1982, No neuron loss from hypothalamic nuclei of old male rats. Gerontology 28: 19–22.PubMedGoogle Scholar
  82. Peters, S., and Kreulen, D. L., 1985, Vasopressin-mediated slow EPSPs in a mammalian sympathetic ganglion, Brain Res. 339: 126–129.PubMedGoogle Scholar
  83. Plotsky, P. M., Bruhn, T. O., and Vale, W., 1985, Hypophysiotropic regulation of adrenocorticotropin secretion in response to insulin induced hypoglycemia, Endocrinology 117: 323–329.PubMedGoogle Scholar
  84. Polger, P., and Taylor, L., 1984, Prostaglandins: Participants in cellular aging, Aging 26: 119–139.Google Scholar
  85. Ponzio, F., Calderini, G., Lomuscio, G., Vantini, G., Toffano, G., and Algeri, S., 1982, Changes in monoamines and their metabolite levels in some brain regions of aged rats, Neurobiol. Aging 3: 23–29.PubMedGoogle Scholar
  86. Preedy, V. R., and Garlick, P. J., 1985, The effect of glucagon administration on protein synthesis in skeletal muscles, heart and liver in vivo, Biochem. J. 228: 575–581.PubMedGoogle Scholar
  87. Ravid, R., Fliers, E., and Swaab, D. F., 1986a, Changes in renal vasopressin (VP) binding sights, urinary VP excretion and plasma testosterone in the aging male Brown-Norway rat, J. Endocrinol. (submitted).Google Scholar
  88. Ravid, R., Swaab, D. F., Fliers, E., and Hoogendijk, J. E., 1986b, Increased vasopressin production in senescence and dementia due to kidney changes, in: Alzheimer’s and Parkinson’s Disease: Strategies in Research and Development (A. Fisher, I. Hanin, and C. Lachman, eds.), pp. 121–128, Plenum, New York.Google Scholar
  89. Rechardt, L., and Hervonen, H., 1982, Ultrastructural changes in the neurohypophysis of the aged male rat, Cell. Tissue Res. 226: 51–62.PubMedGoogle Scholar
  90. Renaud, L. P., Day, T. A., Randle, C. R., and Bourque, C. W., 1985, In vivo and in vitro electrophysiological evidence that central noradrenergic pathways enhance the activity of hypothalamic vasopressinergic neurosecretory cells, in: Vasopressin (R. W. Schrier, ed.), pp. 385–393, Raven, New York.Google Scholar
  91. Rhodes, C. H., Morrell, J. I., and Pfaff, D. W., 1981, Immunohistochemical analysis of magnocellular elements in rat hypothalamus: Distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin, J. Comp. Neurol. 198: 45–64.PubMedGoogle Scholar
  92. Richardson, D. I., and Withrington, P. G., 1982, Physiological regulation of the hepatic circulation, Annu. Rev. Physiol. 44: 57–69.PubMedGoogle Scholar
  93. Ritzmann, R. F., and Tabakoff, B., 1984, Effects of nutrition, alcohol, and age on the brain, Aging 26: 257–278.Google Scholar
  94. Rivier, C., and Vale, W., 1985, Neuroendocrine interaction between corticotropin releasing factor and vasopressin on adrenocorticotropic hormone secretion in the rat, in: Vasopresssin, (R. W. Schrier, ed.), pp. 181–188, Raven, New York.Google Scholar
  95. Robertson, G. L., and Rowe, J., 1980, The effects of aging on neurohypophysial function, Peptides 1 (Suppl. 1): 159–162.Google Scholar
  96. Robinson, B. J., Johnson, R. H., Lambie, D. G., and Palmer, K. T., 1985, Autonomic responses to glucose ingestion in elderly subjects with orthostatic hypotension, Age Ageing 14: 168–173.PubMedGoogle Scholar
  97. Rofe, A. M., and Williamson, D. H., 1983, Metabolic effects of vasopressin infusion in the starved rat, Biochem, J. 212: 231–239.Google Scholar
  98. Rogers, J., Shoemaker, W. J., Morgan, D. G., and Finch, C. E., 1985, Senescent change in tissue weight and immunoreactive b-endorphin, enkephalin, and vasopressin in eight regions of C57BL/6J mouse brain and pituitary, Neurobiol. Aging 6: 1–9.PubMedGoogle Scholar
  99. Sabel, B. A., and Stein, D. G., 1981, Extensive loss of subcortical neurons in the aging rat brain, Exp. Neurol. 73: 507–516.PubMedGoogle Scholar
  100. Sánchez-Franco, F., Cacicedo, L., Vasallo, J. L., Blazquez, J. L., and Muñoz Barragan, L., 1986, Arginine-vasopressin immunoreactive material in the gastrointestinal tract, Histochem. 85: 419–422.Google Scholar
  101. Sapolsky, R. M., and Donnelly, T. M., 1985, Vulnerability to stress-induced tumor growth increases with age in rats: Role of glucocorticoids, Endocrinology 117: 662–666.PubMedGoogle Scholar
  102. Sawchenko, P. E., and Swanson, L. W., 1981, Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses, Science 214: 685–688.PubMedGoogle Scholar
  103. Sawchenko, P. E., and Swanson, L. W., 1982, Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla and spinal cord, J. Comp. Neurol. 205: 260–272.PubMedGoogle Scholar
  104. Scheff, S. W., Anderson, K. J., and DeKosky, S. T., 1985, Strain comparison of synaptic density in hippocampal CA1 of aged rats, Neurobiol. Aging 6: 29–34.PubMedGoogle Scholar
  105. Schmid, P. G., Sharabi, F. M., Guo, G. B., Abboud, F. M., and Thames, M. D., 1984, Vasopressin and oxytocin in the control of circulation. Fed. Proc. 43: 97–102.PubMedGoogle Scholar
  106. Schwartz, J., Keil, L. C., Maselli, J., and Reid, I. A., 1983, Role of vasopressin in blood pressure regulation during adrenal insufficiency, Endocrinology 112: 234–238.PubMedGoogle Scholar
  107. Silverman, A. J., 1983, Magnocellular neurosecretory system, Annu. Rev. Neurosci. 6: 357–380.PubMedGoogle Scholar
  108. Silverman, A. J., and Zimmerman, E. A., 1982, Adrenalectomy increases sprouting in a peptidergic neurosecretory system. Neuroscience 7: 2105–2714.Google Scholar
  109. Silverman, A. J., Oldfield, B., Hou-Yu, A., and Zimmerman, E. A., 1985, The noradrenergic innervation of vasopressin neurons in the paraventricular nucleus of the hypothalamus: An ultrastructural study using radioautography and immunocytochemistry, Brain Res. 325: 215–229.PubMedGoogle Scholar
  110. Silverman, W. F., and Sladek, J. R., Jr., 1986, Aging in the rat is accompanied by increased size of and synaptic input to magnocellular neurons in the supraoptic nucleus, Anal. Rec. 214: 122A (abst.).Google Scholar
  111. Silverman, W. F., Sladek, C. D., and Sladek, J. R., Jr., 1985, A functional and morphological study of noradrenergic innervation of the supraoptic nucleus in the aging rat, Soc. Neurosci. Abs. 11: 1077.Google Scholar
  112. Simpkins, J. W., Field, F. P., and Ress, R. J., 1983, Age-related decline in adrenergic responsiveness of the kidney, heart and aorta of male rats, Neurobiol. Aging 4: 233–238.PubMedGoogle Scholar
  113. Sims, K. B., Hoffman, D. L., Said, S. I., and Zimmerman, E. A., 1980, Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: An immunocytochemical study, Brain Res. 186: 165–183.PubMedGoogle Scholar
  114. Sladek, C. D., McNeill, T. H., Gregg, C. M., Blair, M. L., and Baggs, R. B., 1981, Vasopressin and renin response to dehydration in aged rats, Neurobiol. Aging 2: 293–302.PubMedGoogle Scholar
  115. Sladek, J. R., Jr., 1985, Central catecholamine pathways to vasopressin neurons, in: Vasopressin (R. W. Schrier, ed.), pp. 343–351, Raven, New York.Google Scholar
  116. Sladek, J. R., Jr., and Sladek, C. D., 1983, Anatomical reciprocity between magnocellular peptides and noradrenaline in putative cardiovascular pathways, Prog. Brain Res. 60: 437–443.PubMedGoogle Scholar
  117. Sladek, J. R., Jr., and Sladek, C. D., 1985, Neurological control of vasopressin release, Fed. Proc. 44: 66–71.PubMedGoogle Scholar
  118. Sladek, J. R., Jr., McConnel, J., and McNeill, T. H., 1979, Integrated morphology of neuronal catecholamines and neurophysin in the aged macaque, in: Parkinson’s Disease Vol. II (C. E. Finch, D. E. Potter, and A. D. Kenny, eds.), pp. 241–250, Plenum, New York.Google Scholar
  119. Sladek, J. R., Jr., Khachaturian, H., Hoffman, G. E., and Scholer, J., 1980, Aging of central endocrine neurons and their aminergic afférents, Peptides 1 (suppl. 1): 141–157.Google Scholar
  120. Sladek, J. R., Jr., Scholer, J., and Armstrong, W. E., 1983, Norepinephrine-vasopressin interactions during aging, in: Structure and Function of Peptidergic and Aminergic Neurons (S. Y. Ibata and E. A. Zimmerman, eds.), pp. 289–298, Japan Scientific Society, Tokyo.Google Scholar
  121. Sladek, J. R., Jr., Fields, J., Phelps, C. J., and Khachaturian, H., 1984, Development of the catecholamine innervation of the supraoptic nucleus in the Brattleboro rat, Peptides 5(1): 151–155.PubMedGoogle Scholar
  122. Sofroniew, M. V., 1985, Vasopressin-and neurophysin-immunoreactive neurons in the septal region, medial amygdala and locus coeruleus in colchine-treated rats, Neuroscience 15: 347–358.PubMedGoogle Scholar
  123. Sofroniew, M. V., and Glasman, W., 1981, Golgi-like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocin or neurophysin in the rat, Neuroscience 6: 619–643.PubMedGoogle Scholar
  124. Sofroniew, M. V., and Weindl, A., 1978, Projections from the parvocellular vasopressin-and neurophysin-containing neurons of the suprachiasmatic nucleus, Am. J. Anal. 153: 391–430.Google Scholar
  125. Sturrock, R. R., and Rao, K. A., 1985, A quantitative histological study of neuronal loss from the locus coeruleus of ageing mice, Neuropathol. Appl. Neurobiol. 11: 55–60.PubMedGoogle Scholar
  126. Sved, A. F., Scott, P. J., and Kole, M., 1985, Cerebellar lesions attenuate vasopressin release in response to hemorrhage, Neurosci. Lett. 55: 65–70.PubMedGoogle Scholar
  127. Swanson, L. W., Sawchenko. P. E., Berod, A., Hartman, B. K., Helle, K. B., and Vanorden, D. E., 1981, An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus, J. Comp. Neurol. 196: 271–285.PubMedGoogle Scholar
  128. Tanaka, J., Kaba, H., Saito, H., and Seto, K., 1985, Inputs from the Al noradrenergic region to hypothalamic paraventricular neurons in the rat, Brain Res. 335: 368–371.PubMedGoogle Scholar
  129. Turkington, M. R., and Everitt, A. V., 1976, The neurohypophysis and aging with special reference to the antidiuretic hormone, in: Hypothalamus, Pituitary and Aging (A. V. Everitt and J. A. Burgess, eds.), pp. 123–136, Charles C Thomas, Springfield, Illinois.Google Scholar
  130. Veale, W. L., Eagan, P. C., and Cooper, K. E., 1982, Abnormality of the febrile response of the Brattleboro rat, Ann. NY. Acad. Sci. 394: 776–779.PubMedGoogle Scholar
  131. Vinardell, P., and Bolufer, J., 1984, Age dependent changes on jejunal sugar absorption by rat in vivo, Exp Gerontol. 19: 73–78.PubMedGoogle Scholar
  132. Vokes, T., and Robertson, G. L., 1985, Effects of insulin on the osmoregulation of thirst and vasopressin, in: Vasopressin (R. W. Schrier, ed.), pp. 271–279, Raven, New York.Google Scholar
  133. Walsh, C. H., Baylis, P. H., and Malins, J. M., 1979, Plasma arginine vasopressin in diabetic ketoacidosis, Diabetologia 16: 93–96.PubMedGoogle Scholar
  134. Watkins, W. B., and Choy, V. J., 1980, The impact of aging on neuronal morphology in the rat hypothalamo-neurohypophysial system: An immunohistochemical study, Peptides 1: 239–245.Google Scholar
  135. Watson, R. E., Jr., Wiegand, S. J., Clough, R. C., Sladek, C. D., and Hoffman-Small, G., 1984, The sexually dimorphic vasopressinergic fiber density in the medial preoptic nucleus originates in the suprachiasmatic nucleus, Soc. Neurosci. Abs. 10:436.Google Scholar
  136. Weindruch, R., and Walford, R. L., 1982, Dietary restriction in mice beginning at 1 year of age: Effect on life-span and spontaneous cancer incidence, Science 215: 1415–1417.PubMedGoogle Scholar
  137. Wei, J. Y., Mendelowitz, D., Anastasi, N., and Rowe, J. W., 1985, Influence of age on cardiovascular reflex response in anesthetized rats, Am. J. Physiol. 249: R31–R38.PubMedGoogle Scholar
  138. Whitfield, J. F., MacManus, J. P., and Gillan, D. J., 1970, The possible mediation by cyclic AMP of the stimulation of thymocyte proliferation by vasopressin and the inhibition of this mitogenic action by thyrocalcitonin, J. Cell. Physiol. 76: 65–76.PubMedGoogle Scholar
  139. Whitnall, M. H., Mezey, E., and Gainer, 1985, Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles, Nature (Lond.) 317: 248–250.Google Scholar
  140. Wiegand, S. J., and Price, J. L., 1980, Cells of origin of the afferent fibers to the median eminence in the rat, J. Comp. Neurol. 192: 1–19.PubMedGoogle Scholar
  141. Williams, B. O., Caird, F. I., and Lennox, I. M., 1985, Haemodynamic response to postural stress in the elderly with and without postural hypotension, Age Ageing 14: 193–201.PubMedGoogle Scholar
  142. Williams, T. D. M., Carter, D. A., and Lightman, S. L., 1985, Sexual dimorphism in the posterior pituitary response to stress in the rat, Endocrinology 116: 738–740.PubMedGoogle Scholar
  143. Wongsurawat, N., 1985, Diabetes and aging, Aging 30: 59–73.Google Scholar
  144. Zbuzek, V. K., and Wu., W., 1979, Seasonal variations in vasopressin secretion in rats, Experientia 35: 1523–1524.PubMedGoogle Scholar
  145. Zbuzek, V. K., and Wu, W., 1982, Age-related vasopressin changes in rat plasma and the hypothalamo-hypophysial system, Ex. Gerontol. 17: 133–138.Google Scholar
  146. Zbuzek, V. K., Zbuzek, V., and Wu, W., 1983, The effect of aging on vasopressin system in Fischer 344 rats, Exp. Gerontol. 18: 305–311.PubMedGoogle Scholar
  147. Zbuzek, V., Zbuzek, V. K., and Wu, W., 1984, Vasopressin release from individually superfused neurohypophses decreases in aged rats, Neuroendocrinology 39: 538–548.PubMedGoogle Scholar
  148. Zerbe, R. L., Vinicor, F., and Robertson, G. L., 1979, Plasma vasopressin in uncontrolled diabetes mellitus, Diabetes 28: 503–508.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Paul F. Aravich
    • 1
  • John R. SladekJr.
    • 1
  1. 1.Department of Neurobiology and AnatomyUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations