Vasopressin pp 497-516 | Cite as

Metabolic Processing of Vasopressin in the Brain and Significance of Metabolites

  • J. Peter H. Burbach


The production of biologically active peptides requires precursors to be cleaved by proteolytic enzymes. Vasopressin (VP) is a product generated by proteolytic processing of a large precursor, the VP-neurophysin precursor or propressophysin (Russel et al, 1980; Richter, 1983; Chapter 4, this volume). Propressophysin is encoded by a single gene in bovine, rat, and man (Land et al., 1982; Schmale et al., 1983; Ruppert et al., 1984; Sausville et al., 1985). In the brain, this gene is expressed by several groups of magno- and parvocellular neurons (Buijs, 1978; Buijs et al., 1983; Sofroniew and Weindl, 1978; Van Leeuwen and Caffe, 1983; see also Chapter 2, this volume). These neurons package and process the precursor and transport the products, i.e., VP, neurophysin, and a glycopeptide, termed C-terminal of propressophysin (CPP), along fiber systems to their terminals in order to release them for biological action. These fiber systems terminate either in the posterior lobe of the pituitary gland and median eminence or in limbic mid-brain and brain stem structures within the central nervous system (Buijs, 1978; Sofroniew, 1980; Zimmermann et al, 1984).


Active Peptide Synaptic Membrane Brain Membrane Aminopeptidase Activity Neurohypophyseal Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ader, B., and De Wied, D., 1972, Effects of lysine-vasopressin on passive avoidance learning, Psych. Sei. 29: 46–48.Google Scholar
  2. Ader, B., Weijnen, J. A. W. M., and Moleman, P., 1972, Retention of a passive avoidance response as a function of the intensity and duration of electric shock, Psych. Sci. 26: 125–128.Google Scholar
  3. Ang, V. T. Y., and Jenkins, J. S., 1984, Neurohypophysial hormones in the adrenal medulla, J. Clin. Endocrinol Metab. 58: 688–691.PubMedGoogle Scholar
  4. Bauer, K., Graf, K. J., Faivre-Baumann, A., Beier, S., Tixier-Vidal, A., and Kleinkauf, H., 1978, Inhibition of prolactin secretion by histidyl-proline diketopiperazine, Nature (Lond.) 274: 174–175.Google Scholar
  5. Biegon, A., Terlou, M., Voorhuis, Th.D., and De Kloet, E. R., 1984, Arginine vasopressin bindings sites in rat brain: A quantitative autoradiographic study, Neurosci. Lett. 44: 229–234.PubMedGoogle Scholar
  6. Bodenmüller, H., and Schaller, H. G, 1981, Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterates to humans, Nature (Lond.) 293: 579–580.Google Scholar
  7. Boer, G. J., 1984, Vasopressin and brain development: Studies using the Brattleboro rat, Peptides 6(Suppl 7): 49–62.Google Scholar
  8. Boer, G. J., Swaab, D. F., Uylings, H. B. M., Boer, K., Buijs, R. M., and Velis, D. N., 1980, Neuro-peptides in rat brain development, Prog. Brain Res. 53: 202–227.Google Scholar
  9. Bohus, B., 1977, Effect of desglycinamide-lysine vasopressin (DG-LVP) on sexually motivated T-maze behavior in the male rat, Horm. Behav. 8: 52–61.PubMedGoogle Scholar
  10. Brinton, R. E., Wamsley, J. K., Gee, K. W., Wan, Y. P., and Yamamura, H., 1984a, 3H-Oxytocin binding sites in the rat brain demonstrated by quantitative light microscopic autoradiography, Eur. J. Pharmacol. 102: 365–367.PubMedGoogle Scholar
  11. Brinton, R. E., Gee, K. W., Wamsley, J. K., Davis, T. P., and Yamamura, H. I., 1984b, Regional distribution of putative vasopressin receptors in rat brain and pituitary by quantitative autoradiography, Proc. Natl. Acad. Sci. U.S.A. 81: 7248–7252.PubMedGoogle Scholar
  12. Brinton, R. E., Wamsley, J. K., Gehlert, D., Wan, Y. P., and Yamamura, H. J., 1985, Vasopressin metabolite peptide (AVP-(4-9)) binding sites in rat kidney: Distribution distinct from vasopressin binding sites, Eur. J. Pharmacol. 108: 321–322.PubMedGoogle Scholar
  13. Brinton, R. E., Gehlert, D. R., Wamsley, J. K., Wan, Y. P., and Yamamura, H. I., 1986, Vasopressin metabolite, AVP(4-9), binding sites in brain: Distribution distinct from that of parent peptide. Life Sci. 38: 443–452.PubMedGoogle Scholar
  14. Buijs, R. M., 1978, Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat: Pathways to the limbic system, medulla oblongata and spinal cord, Cell Tissue Res. 192: 423–435.PubMedGoogle Scholar
  15. Buijs, R. M., De Vries, G. J., Van Leeuwen, F. W., and Swaab, D. F., 1983, Vasopressin and oxytocin distribution and putative functions in the brain, Prog. Brain Res. 60: 115–122.PubMedGoogle Scholar
  16. Burbach, J. P. H., 1984a, Action of proteolytic enzymes on lipotropins and endorphins: Biosynthesis, biotransformation, and fate, Pharmacol. Ther. 24: 321–354.PubMedGoogle Scholar
  17. Burbach, J. P. H., 1984b, Peptide hormones in the brain as precursors of neuropeptides, IBRO News 12: 6–10.Google Scholar
  18. Burbach, J. P. H., 1986, Proteolytic conversion of oxytocin, vasopressin and related peptides in the brain, in: Current Topics in Neuroendocrinology Vol. 5 (D. Ganten and D. Pfaff, eds.), pp. 55–90, Springer-Verlag, Berlin.Google Scholar
  19. Burbach, J. P. H., and De Wied, D., 1981, Memory effects and brain proteolysis of neurohypophyseal hormones, in: Neurohypophyseal Peptide Hormones and Other Biologically Active Peptides (D. M. Schlesinger, ed.) pp. 69–87, Elsevier/North-Holland, Amsterdam.Google Scholar
  20. Burbach, J. P. H., and Lebouille, J. L. M., 1983, Proteolytic conversion of arginine-vasopressin and oxytocin by brain synaptic membranes. Characterization of formed peptides and mechanism of proteolysis, J. Biol. Chem. 258: 1487–1494.PubMedGoogle Scholar
  21. Burbach, J. P. H., De Kloet, E. R., and De Wied, D., 1980a, Oxytocin biotransformation in the rat limbic brain: Characterization of peptidase activities and significance in the formation of oxytocin fragments, Brain Res. 202: 401–414.PubMedGoogle Scholar
  22. Burbach, J. P. H., Loeber, J. G., Verhoef, J., Wiegant, V. M, De Kloet, E. R., and De Wied, D., 1980b, Selective conversion of β-endorphin into peptides related to γ-and α-endorphin, Nature (Lond.) 283: 96–97.Google Scholar
  23. Burbach, J. P. H., Wang, X.-C., and Van Ittersum, M., 1982, Difference in susceptibility of arginine-vasopressin and oxytocin to aminopeptidase activity in brain membranes, Biochem. Biophys. Res. Commun. 108: 1165–1171.PubMedGoogle Scholar
  24. Burbach, J. P. H., Kovacs, G. L., De Wied, D., Van Nispen, J. W., and Greven, H. M. 1983a, A major metabolite of arginine-vasopressin in the brain is a highly potent neuropeptide, Science 221: 1310–1312.PubMedGoogle Scholar
  25. Burbach, J. P. H., Kovács, G. L., Wang, X.-C., and De Wied, D., 1983b, Metabolites of arginine-vasopressin and oxytocin are highly potent neuropeptides in the brain, in: Biochemical and Clinical Aspects of Neuropeptides: Biosynthesis, Processing and Gene Structure (G. Koch and K. Richter, eds.), pp. 211–224, Academic, New York.Google Scholar
  26. Burbach, J. P. H., Bohus, B., Kovács, G. L., Van Nispen, J. W., Greven, H. M., and De Wied, D., 1983c, Oxytocin is a precursor of potent behaviourally active neuropeptides, Eur. J. Pharmacol. 94: 125–131.PubMedGoogle Scholar
  27. Burbach, J. P. H., Lebouille, J. L. M., and Wang, X.-C., 1984a, in: Regulation of Transmitter Function: Basic and Clinical Aspects (E. S. Vizi and K. Magyar, eds.), pp. 237–247, Akademiai Kiado, Budapest.Google Scholar
  28. Burbach, J. P. H., Wang, X.-C., Ten Haaf, J. A., and De Wied, D., 1984b, Substances resembling C-terminal vasopressin fragments are present in the brain but not in the pituitary gland, Brain Res. 306: 384–387.PubMedGoogle Scholar
  29. Burbach, J. P. H., Leboauille, J. L. M., and Wang, X.-C., 1986, Metabolic conversion of pro-opio-melanocortin peptides by brain peptidases: ACTH, a-MSH and β-endorphin, in: Central Actions of ACTH and Related Peptides (D. De Wied and W. Ferrari, eds.), pp. 53–67, Liviana, Padova.Google Scholar
  30. Burbach, J. P. H., Terwell, D., and Lebouille, J. L. M, 1987, Measurement and distribution of vasopressin-converting aminopeptidase activity in rat brain, Biochem. Biophys. Res. Commun., in press.Google Scholar
  31. Carraway, R., and Leeman, S. E., 1975, The amino acid sequence of a hypothalamic peptide neuro-tensin, J. Biol. Chem. 250: 1907–1911.PubMedGoogle Scholar
  32. Constantini, M. G., and Pearlmutter, A. F., 1984, Properties of the specific binding sites for arginine-vasopressin in rat hippocampal synaptic membranes, J. Biol. Chem. 259: 11739–11745.Google Scholar
  33. Cooper, K. E., Kasting, N. W., Lederis, K., and Veale, W. C., 1979, Evidence supporting a role for vasopressin in natural suppression of fever in sheep, J. Physiol. (Lond.) 295: 33–45.Google Scholar
  34. De Jong, W., Gaffori, O., Van Ree, J. M., and De Wied, D., 1985, Differentiation of behavioral and peripheral actions of neuropeptides generated from vasopressin in the brain, in: Vasopressin (R. W. Schrier, ed.), pp. 189–194, Raven, New York.Google Scholar
  35. Dekanski, J., 1952, The quantitative assay of vasopressin, Br. J. Pharmacol. 7: 567–572.Google Scholar
  36. De Kloet, E. R., Rotteveel, F., Voorhuis, Th. A. M., and Terlou, M., 1985a, Topography of binding sites for neurohypophyseal hormones in rat brain. Eur. J. Pharmacol. 110: 113–119.PubMedGoogle Scholar
  37. De Kloet, E. R., Voorhuis, Th. A. M., Burbach, J. P. H., and De Wied, D., 1985b, Autoradiographic localization of binding sites for the arginine-vasopressin metabolite AVP-(4-9) in rat brain, Neurosci. Lett. 56: 7–11.PubMedGoogle Scholar
  38. De Wied, D., 1969, Effects of peptide hormones on behavior, in: Frontiers in Neuroendocrinology (W. F. Ganong and L. Martini, eds.), pp. 97–140, Oxford University Press, Oxford.Google Scholar
  39. De Wied, D., 1971, Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats, Nature (Lond.) 232: 58–60.Google Scholar
  40. De Wied, D., 1976, Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments, Life Sci. 19: 685–690.PubMedGoogle Scholar
  41. De Wied, D., 1977, Peptides and behavior, Life Sci. 20: 195–204.PubMedGoogle Scholar
  42. De Wied, D., 1979, Neurohypophyseal hormones and memory, in: Recent Results in Peptide Hormones and Androgenic Steriod Research (F. A. Laszlo, ed.), pp. 149–154, Akademiai Kiado, Budapest.Google Scholar
  43. De Wied, D., 1980, Behavioural actions of neurohypophyseal peptides, Proc. R. Soc. Lond. 210: 183–195.PubMedGoogle Scholar
  44. De Wied, D., 1983, Central actions of neurohypophyseal hormones, Prog. Brain Res. 60: 155–167.PubMedGoogle Scholar
  45. De Wied, D., 1984, The neuropeptide concept, Maturitas 6: 217–223.PubMedGoogle Scholar
  46. De Wied, D., and Bohus, B., 1978, The modulation of memory processes by vasotocin, the evolutionary oldest neurosecretory principle, Prog. Brain Res. 48: 327–334.PubMedGoogle Scholar
  47. De Wied, D., Greven, H. M., Lande, S., and Witter, A., 1972, Dissociation of the behavioural and endocrine effects of lysine vasopressin by tryptic digestion, Br. J. Pharmacol. 45: 118–122.PubMedGoogle Scholar
  48. De Wied, D., Gaffori, O., Van Ree, J. M, and De Jong, W., 1984a, Central target for the behavioral effects of vasopressin neuropeptides, Nature (Lond.) 308: 276–278.Google Scholar
  49. De Wied, D., Gaffori, O., Van Ree, J. M., and De Jong, W., 1984b, Vasopressin antagonists block peripheral as well as central vasopressin receptors, Pharmacol. Biochem. Behav. 21: 393–400.PubMedGoogle Scholar
  50. De Wied, D., Gaffori, O., Burbach, J. P. H., Kovács, G. L., and Van Ree, J. M., 1987, Structure activity relationship studies with C-terminal fragments of vasopressin and oxytocin on avoidance behavof rats, J. Pharmacol Exp. Ther. 241: 268–291.PubMedGoogle Scholar
  51. Docherty, K., and Steiner, D. F., 1982, Post-translational proteolysis in polypeptide hormone biosynthesis, Annu. Rev. Physiol. 44: 624–638.Google Scholar
  52. Dorsa, D. M., Majumbar, L. A., Petracca, F. M., Baskin, D. G., and Cornett, L. E., 1983, Characterization and localization of 3H-arginine vasopressin binding to rat kidney and brain tissue, Peptides 4: 699–704.PubMedGoogle Scholar
  53. Fekete, M., Lengyel, A., Hededüs, B., Penke, B., Zarandy, M., Toth, G. K., and Telegdy, G., 1984, Further analysis of the effects of cholecystokinin octapeptides on avoidances behaviour in rats, Eur. J. Pharmacol. 98: 79–91.PubMedGoogle Scholar
  54. Ferner, B. M., and Branda, L. A., 1966, Plasma oxytocinase, in: Proceedings of the Third International Pharmacology Congress, Sao Paulo, p. 179.Google Scholar
  55. Folkers, K., Cheng, J.-K., Curry, L., Bowers, C. Y., Weil, A., and Schally, A. V., 1970, Synthesis and relationship of L-glutaminyl-L-histidyl-L-prolinamide to the thyrotropin releasing hormone, Biochem. Biophys. Res. Commun. 39: 110–113.PubMedGoogle Scholar
  56. Gaffori, O., Burbach, J. P. H., Kovács, G. L., Van Ree, J. M, and De Wied, D., 1987, Structure activity relationship studies with C-terminal fragments of vasopressin and oxytocin on avoidance behavior J. Pharmacol Exp. Ther., in press.Google Scholar
  57. Ganten, D., and Speck, G., 1978, The brain renin-angiotensin system: A model for the synthesis of peptides in the brain, Biochem. Pharmacol. 27: 2379–2389.PubMedGoogle Scholar
  58. Hall, M. E., and Stewart, J. M, 1983, Substance P and behavior: Opposite effects of N-terminal and C-terminal fragments, Peptides 4: 763–768.PubMedGoogle Scholar
  59. Heller, H., and Urban, F. F., 1935, The fate of the antidiuretic principle of postpituitary extracts in vivo and in vitro, J. Physiol. (Lond.) 85: 502–518.Google Scholar
  60. Hernandez, D. E., Richardson, C. M, Nemeroff, C. B., Orlando, R. C., St.-Pierre, S., Rioux, F., and Prange A., J., Jr., 1984, Evidence for biological activity of two N-terminal fragments of neurotensin, neurotensin-(1-8) and neurotensin-(1-10), Brain Res. 301: 153–156.PubMedGoogle Scholar
  61. Herrera-Marschitz, M., Hökfelt, T., Ungerstedt, U., Terenius, L., and Goldstein, M., 1984, Effect of intranigral injections of dynorphin, dynorphin fragments and α-neoendorphin on rotational behaviour in the rat, Eur. J. Pharmacol. 102: 213–227.PubMedGoogle Scholar
  62. Hoffman, P. L., 1982, Structural requirements for neurohypophyseal peptide maintenance of ethanol tolerance, Pharmacol. Biochem. Behav. 17: 685–690.PubMedGoogle Scholar
  63. Hooper, K. C., 1962, The catabolism of some physiologically active polypeptides by homogenate of dog hypothalamus, Biochem. J. 83: 511–517.PubMedGoogle Scholar
  64. Joels, M., and Urban, I. J. A., 1984, Arginine8-vasopressin enhances the responses of lateral septal neurons in the rat to excitatory amino acids and fimbria-fornix stimuli, Brain Res. 311: 201–209.PubMedGoogle Scholar
  65. Kasting, N. W., Veale, W. L., and Cooper, K. E., 1980, Convulsive and hypothermic effects of vasopressin in the brain of the rat, Can. J. Physiol. Pharmacol. 58: 316–319.PubMedGoogle Scholar
  66. Kato, T., Okada, M., Nakano, T., Nagatsu, T., Emura, J., Sakakibara, S., Iizuka, S., Nakarawa, N., and Ogawa, H., 1980, The presence of substance P carboxy-terminal heptapeptide in pig brain stem, Proc. Jpn. Acad. 56: 388–393.Google Scholar
  67. Koida, M, and Walter, R., 1976, Post-proline cleaving enzyme: Purification of this endopeptidase by affinity chromatography, J. Biol. Chem. 251: 7593–7599.PubMedGoogle Scholar
  68. Kovács, G. L., and De Wied, D., 1983, Hormonally active arginine-vasopressin suppresses endotoxin-induced fever in rats: Lack of effect of oxytocin and a behaviorally active vasopressin fragment, Neuroendocrinology 37: 258–261.PubMedGoogle Scholar
  69. Kovács, G. L., Bohus, B., Versteeg, D. H. G., Telegdy, G., and De Wied, D., 1982, Neurohypophyseal hormones and memory, in: Advances in Pharmacology and Therapeutics, II, Vol. 1 (H. Yoshida, Y. Hagihara, and S. Ebashi, eds.) pp. 175–187, Pergamon, Oxford/New York.Google Scholar
  70. Kovács, G. L., Veldhuis, H. D., Versteeg, D. H. G., and De Wied, D., 1986, Facilitation of avoidance behavior by vasopressin fragments micro-injected into limbic-midbrain structures, Brain Res. 175: 303–309.Google Scholar
  71. Laczi, F., Gaffori, O., De Kloet, E. R., and De Wied, D., 1983, Differential responses in immunoreactive arginine-vasopressin content of microdissected brain regions during passive avoidance behavior, Brain Res. 206: 342–346.Google Scholar
  72. Land, H., Schütz, G., Schmale, H. and Richter, D., 1982, Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor, Nature (Lond.) 295: 299–303.Google Scholar
  73. Lauson, H. D., 1974, Metabolism of the neurohypophyseal hormones, in: Handbook of Physiology, Vol. 4 (R. O. Greep, E. B. Astwood, E. Kobil, and W. H. Wawyer, eds.), pp. 287–293, American Physiological Society, Washington, D.C..Google Scholar
  74. Lazure, C., Seidah, N. G., Pélaprat, D., and Chrétien, M., 1983, Proteases and post-translational processing of prohormones: A review, Can. J. Biochem. 61: 501–515.Google Scholar
  75. Lim, A. T., Lolait, S. J., Barlow, J. W., Autelitano, D. J., Toh, B. H., Boublik, J., Abraham, J., Johnston, C. J., and Funder, J. W., 1984, Immunoreactive arginine-vasopressin in Brattleboro rat ovary, Nature (Lond.) 310: 61–64.Google Scholar
  76. Loh, Y. P., Brownstein, M. J., and Gainer, HJ., 1984, Proteolysis in neuropeptide processing and other neural functions, Annu. Rev. Neurosci. 7: 189–222.PubMedGoogle Scholar
  77. Lutz-Bucher, B., and Koch, B., 1983, Characterization of specific receptors of vasopressin in the pituitary gland, Biochem. Biophys. Res. Commun. 115: 492–498.PubMedGoogle Scholar
  78. Marks, N., Abrash, L., and Walter, R., 1973, Degradation of neurohypophyseal hormones by brain and purified brain enzymes, Proc. Soc. Exp. Biol. Med. 142: 455–460.PubMedGoogle Scholar
  79. Matsuguchi, H., Sharabi, F. M., Gordon, F. J., Johnson, A. K., and Schmid, P. G., 1982, Blood pressure and heart rate responses to micro-injection of vasopressin into the nucleus tractus solitarius region of the rat, Neuropharmacology 21: 687–693.PubMedGoogle Scholar
  80. Meissenberg, G., and Simmons, W. H., 1982, Behavioral effects of intracerebroventricularly administered neurohypophyseal hormone analogs in mice, Pharmacol Biochem. Behav. 16: 819–824.Google Scholar
  81. Meissenberg, G., and Simmons, W. H., 1984a, Factors relevant for the inactivation of vasopressin after intracerebroventricular injection in mice, Life Sci. 34: 1231–1240.Google Scholar
  82. Meissenberg, G., and Simmons, W. H., 1984b, Amastatin potentiates the behavioral effects of vasopressin and oxytocin in mice, Peptides 5: 535–539.Google Scholar
  83. Mühlethaler, M., Dreyfuss, J. J., and Gähwiler, R., 1982, Vasopressin excites hippocampal neurons, Nature (Lond.) 291: 491–493.Google Scholar
  84. Nakajima, T., 1981, Active peptides in amphibian skin, TIPS 2: 202–205.Google Scholar
  85. Nicholson, H. D., Swann, R. W., Burford, G. D., Wathes, D. C., Porter, D. G., and Pickering, B. T., 1984, Identification of oxytocin and vasopressin in the testis and in adrenal tissue, Regul. Pept. 8: 141–146.PubMedGoogle Scholar
  86. Peach, M. J., 1977, Renin-angiotensin system: Biochemistry and mechanism of action, Physiol. Rev. 57: 313–370.PubMedGoogle Scholar
  87. Pittman, Q. J., Lawrence, D., and McLean, L., Central effects of arginine vasopressin on blood pressure in rats, Endocrinology 110: 1058–1060.Google Scholar
  88. Pliska, V., Barth, T., and Thorn, N. A., 1971a, Some metabolites of specifically tritium-labeled lysine-vasopressin: Identification by thin layer chromatography, Acta Endcrinol. (Copenh.) 67: 1–11.Google Scholar
  89. Pliska, V., Thorn, N. A., and Vilhardt, H., 1971b, In vitro uptake and breakdown of tritiated lysine-vasopressin by bovine neurohypophyseal and corticol tissue. Acta Endocrinol. (Copenh.) 67: 12–22.Google Scholar
  90. Rehfeld, J. F., 1983, Posttranslational processing of gastrin/CCK peptides in the central nervous system, in: Biochemical and Clinical Aspects of Neuropeptides: Synthesis, Processing and Gene Structure (G. Koch and D. Richter, eds.), pp. 151–160, Academic, New York.Google Scholar
  91. Richter, D., 1983, Vasopressin and oxytocin are expressed as polyproteins, Trends Biochem. Sci. 8: 278–281.Google Scholar
  92. Ruppert, S., Scherer, G., and Schütz, G., 1984, Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence, Nature (Lond.) 308: 554–557.Google Scholar
  93. Russell, J. T., Brownstein, M. J., and Gainer, H., 1980, Biosynthesis of vasopressin, oxytocin and neurophysins: Isolation and characterization of two common precursors (propressophysin and prooxyphysin), Endocrinology 107: 1880–1891.PubMedGoogle Scholar
  94. Sakurada, T., Le Grevés, P., Stewart, J., and Terenius, L., 1985, Measurement of substance P metabolites in rat CNS, J. Neurochem. 44: 718–722.PubMedGoogle Scholar
  95. Sausville, E., Carney, D., and Battey, J., 1985, The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line, J. Biol. Chem. 260: 10236–10241.PubMedGoogle Scholar
  96. Schmale, H., Heinsohn, S., and Richter, D., 1983, Structural organization of the rat gene for the arginine vasopressin-neurophysin precursor, EMBO J. 2: 763–767.PubMedGoogle Scholar
  97. Schmid, P. G., Sharabi, F. M., Guo, G. B., Abboud, F. M., and Thames, M. D., 1984, Vasopressin and oxytocin in the neural control of the circulation. Fed. Proc. 43: 97–102.PubMedGoogle Scholar
  98. Simmons, W. H., and Walter, R., 1980, Carboxamidopeptidase purification and characterization of a neurohypophyseal hormone inactivating peptidase from toad skin, Biochemistry 19: 39–48.PubMedGoogle Scholar
  99. Simmons, W. H., and Walter, R., 1981, Enzyme inactivation of oxytocin: Properties of carboxami-dopeptidases, in: Neurohypophyseal Peptide Hormones and Hormones and Other Biological Active Peptides (D. H. Schlesinger, ed.), pp. 151–165, Elsevier/North-Holland, Amsterdam.Google Scholar
  100. Simmons, W. H., and Arawski, A. T., 1985, A vasopressin-degrading brain synaptosomal aminopep-tidase: Inhibitor profile. Proceedings of the Thirteenth International Congress on Biochemistry, Amsterdam (Abst. TU-276).Google Scholar
  101. Sjöholm, I., and Yman, L., 1967, Degradation of oxytocin, lysine-vasopressin, angiotension II and angiotensin-II-amide by oxytocinase (cystine aminopeptidase), Acta Pharm. Suec. 4: 65–76.PubMedGoogle Scholar
  102. Smith, C. W., 1981, Conformation-activity studies on oxytocin and vasopressin: Exploring the roles of the moieties within the hydrophilic cluster, in: Neurohypophyseal Peptide Hormones and Other Biologically Active Peptides (D. H. Schlesinger, ed.), pp. 23–36, Elsevier/North-Holland, Amsterdam.Google Scholar
  103. Södersten, P., Henning, M., Melin, P., and Ludin, S., 1983, Vasopressin alters female sexual behavior by acting on the brain independently of alterations in blood pressure, Nature (Lond.) 301: 608–610.Google Scholar
  104. Sofroniew, M. V., 1980, Projections from vasopressin, oxytocin and neurophysin neurons to neural targets in the rat and human, J. Histochem. Cytochem. 28: 475–478.PubMedGoogle Scholar
  105. Sofroniew, M. V., And Weindl, A., 1978, Projections from the parvocellular vasopressin and neurophysin containing neurons of the suprachiasmatic nucleus, Am. J. Anat. 153: 391–430.PubMedGoogle Scholar
  106. Steardo, L., Knight, M., Tamminga, C. A., and Chase, T. N., 1985, Products of cholecystokinin (CCK)-octapeptide proteolysis interact with central CCK receptors, Neurosci. Lett. 54: 319–325.PubMedGoogle Scholar
  107. Tonnaer, J. A. D. M., Wiegant, V. M., De Jong, W., and De Wied, D., 1982, Central effects of angiotensions on drinking and blood pressure: Structure-activity relationships, Brain Res. 236: 417–428.PubMedGoogle Scholar
  108. Tonon, M.-C, Leboulanger, F., Delarue, C., Jegou, S., Fresel, J., Leroux, P., and Vaudry, H., 1979, TRH as MSH-releasing factor in the frog, in: Biochemical Endocrinology: Synthesis of Adenohy-pophyseal Hormones, Cellular and Molecular Mechanisms (M. Jutisz and K. W. McKern, eds.), pp. 731–751, Plenum, New York.Google Scholar
  109. Urban, I. J. A., and Joels, M., 1985, Studies on function of arginine8-vasopressin in lateral septum of rats, Proceedings of the Sixteenth International Congress of the International Society for Psycho-neuroendocrinology, Kyoto, April 14–18, 1985 (Abst. FC-3-10).Google Scholar
  110. Van Leeuwen, F. W., and Caffe, R., 1983, Vasopressin-immunoreactive cell bodies in the bed nucleus of the stria terminalis of the rat, Cell. Tissue Res. 228: 525–534.PubMedGoogle Scholar
  111. Van Leeuwen, F. W., and Wolters, P., 1983, Light-microscopic autoradiographic localization of 3H-arginine vasopressin binding sites in rat brain and kidney, Neurosci. Lett. 41: 61–66.PubMedGoogle Scholar
  112. Van Nispen, J. W., Hannink, J. A. J., and Greven, H. M., 1983a, Synthesis and behavioral activity of fragments of oxytocin and arginine vasopressin containing a cystine residue in position 6, in: Peptides: Structure and Function. Proceedings of the Sixth American Peptide Symposium, (V. J. Hruby and D. H. Rich, eds.), pp. 421–424, Pierce Chemical Company, Rockford, Illinois.Google Scholar
  113. Van Nispen, J. W., Hannink, J. A. J., Schoffelmeer, M. S., Janssen, W. P. A., Polderdijk, J. P., and Greven, H. M., 1984, Synthesis of fragments of arginine vasopressin and oxytocin containing a cystine residue in position 6, Recl. Trav. Chim. Pays Bas 103: 68–74.Google Scholar
  114. Van Ree, J. M., 1982, Neurohypophyseal hormones and addiction, in: Advances in Pharmacology and Therapeutics, II, Vol. I (H. Hoshida, Y. Hagihara, and S. Ebashi, eds.), pp. 199–209, Pergamon, Oxford.Google Scholar
  115. Van Ree, J. M., and De Wied, D., 1981, Vasopressin, oxytocin and dependence on opiates, in: Endogenous Peptides and Learning and Memory Processes (J. L., Martinez, R. A. Jensen, R. B. Messing, H. Righter, and J. L. McGaugh, eds.), pp. 397–412, Academic, New York.Google Scholar
  116. Veale, W. C., Kasting, N. W., and Cooper, K. E., 1981, Arginine vasopressin and endogenous antipyresis: Evidence and significance, Fed. Proc. 40: 2750–2753.PubMedGoogle Scholar
  117. Versteeg, D. H. G., 1983, Neurohypophyseal hormones and brain neurochemistry, Pharmacol. Ther. 19: 297–325.Google Scholar
  118. Versteeg, C. A. M., Cransberg, K., De Jong, W., and Bohus, B., 1983, Reduction of centrally induced pressor response by neurohypophyseal peptides: The involvement of lower brainstem mechanisms. Eur. J. Pharmacol. 94: 133–140.PubMedGoogle Scholar
  119. Walter, R., 1977, Identification of sites in oxytocin involved in uterine receptor recognition and activation, Fed. Proc. 36: 1872–1878.PubMedGoogle Scholar
  120. Walter, R., and Simmons, W. H., 1977, Metabolism of neurohypophyseal hormones: Consideration from a molecular viewpoint, in: Neurohypophysis (A. M. Moses and L. Share, eds.), pp. 167–188, Karger, Basel.Google Scholar
  121. Wang, X.-C., and Burbach, J. P. H., 1986, Foundation of metabolites of [Arg8]vasopressin (AVP) by brain peptides: Conversion of the intermediate [Cyt6]AVP-(3-9), FEBS Lett. 197: 164–168.PubMedGoogle Scholar
  122. Wang, X.-C., Burbach, J. P. H., Verhoef, J., and De Wied, D., 1983a, Proteolytic conversion of arginine-vasotocin by synaptic membranes from rat and chicken brain, Brain Res. 275: 83–90.PubMedGoogle Scholar
  123. Wang, X.-C., Burbach, J. P. H., Verhoef, J., and De Wied, D., 1983b, Proteolysis of adrenocorticotropin in brain: Characterization of cleavage sites by peptidases in synaptic membranes and formation of peptide fragments, J. Biol. Chem. 258: 7942–7947.PubMedGoogle Scholar
  124. Wang, X.-C., Liu, B., Luo, X.-N., and Cheng, L. T., 1985, Proteolytic conversion of arginine-vasotocin by synaptic membranes from frog brain, Chin. Biochem. J. 1: 17–22.Google Scholar
  125. Zimmerman, E. A., Nilaver, G., Hou-Yu, A., and Silverman, A. J., 1984, Vasopressinergic and oxytocinergic pathways in the central nervous system, Fed. Proc. 43: 91–96.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. Peter H. Burbach
    • 1
  1. 1.Rudolf Magnus Institute for PharmacologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations