Vasopressin pp 389-433 | Cite as

Cardiovascular Actions of Vasopressin



Although the cardiovascular actions of vasopressin (VP) have been examined systematically only in recent years, Oliver and Schafer (1895) first observed the vaso-pressor activity of pituitary gland extracts in 1895. This was soon confirmed by three other investigators (Howell, 1898; Livon, 1898; von Cyon, 1898) and Howell demonstrated that the pressor principle resided in extracts of the posterior lobe. It was from these early observations that VP derived its name. The antidi-uretic actions of VP were not observed until 1913, when two physicians working independently, Farini (1913), in Italy, and Von den Velden (1913), in Germany, reported successful treatment of patients with diabetes insipidus by injections of posterior pituitary extracts. With the 1924 demonstration of the antidiuretic effects of posterior pituitary extracts on the isolated kidney by Starling and Verney (1924), the antiduretic role of the neurohypophysis became the predominant aspect of interest related to VP. It became clear that this hormone was of vital importance for the conservation of body fluids and that, although pressor activity was widely observed, it was evident that these actions required amounts far in excess of those required for maximal antidiuretic activity (Saameli, 1968; Sawyer, 1971; Nakano, 1974). These important antidiuretic actions of VP are reviewed in Chapter 9.


Diabetes Insipidus Arginine Vasopressin Cardiovascular Action Neurohypophysial Hormone Carotid Sinus Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H., Inoue, M., Matsuo, T., and Ogata, N., 1983, The effects of vasopressin on electrical activity in the guinea-pig supraoptic nucleus in vitro, J. Physiol. (Lond.) 337: 665–685.Google Scholar
  2. Aisenbrey, G. A., Handelman, W. A., Arnold, P., Manning, M., and Schrier, R. W., 1981, Vascular effects of arginine vasopressin during fluid deprivation in the rat, J. Clin. Invest. 67: 961–968.PubMedGoogle Scholar
  3. Akatsuka, N., Moran, W. H., Morgan, M. L., and Wilson, M. F., 1977, Effects of steady state plasma vasopressin levels on the distribution of intrarenal blood flow on electrolyte excretion, J. Physiol. (Lond). 266: 567–586.Google Scholar
  4. Altura, B. M., 1970, Significance of amino acid residues in vasopressin on contraction of vascular muscle, Am. J. Physiol. 219: 222–229.PubMedGoogle Scholar
  5. Altura, B. M., 1975, Dose-response relationship for arginine vasopressin and synthetic analogs on three types of rat blood vessels: Possible evidence for regional differences in vasopressin receptor sites within a mammal, J. Pharmacol. Exp. Ther. 193: 413–423.PubMedGoogle Scholar
  6. Altura, B. M., 1976a, DPAVP: A vasopressin analog with selective microvascular and RES actions for the treatment of circulatory shock in rats, Eur. J. Pharmacol. 37: 155–167.PubMedGoogle Scholar
  7. Altura, B. M., 1976b, Microcirculatory approach to the treatment of circulatory shock with a new analog of vasopressin (2-phenylalanine, 8-ornithine) vasopressin, J. Pharmacol. Exp. Ther. 198: 187–196.PubMedGoogle Scholar
  8. Altura, B. M., 1977, Comparative cellular and pharmacologie actions of neurohypophysial hormones on smooth muscle, Fed. Proc. 36: 1840–1841.PubMedGoogle Scholar
  9. Altura, B. M., 1978, Humoral, hormonal, and myogenic mechanisms in microcirculatory regulation, in: Microcirculation, Vol. II (G. Kaley and B. M. Altura, eds.), pp. 431–502, University Park Press, Baltimore.Google Scholar
  10. Altura, B. M., 1980, Evidence that endogenous vasopressin plays a role in circulatory shock. Role for reticuloendothelial system using Brattleboro rats, Experientia 36: 1080–1081.PubMedGoogle Scholar
  11. Altura, B. M., and Altura, B. T., 1977, Vascular smooth muscle and neurohypophysial hormones, Fed. Proc. 36: 1853–1860.PubMedGoogle Scholar
  12. Altura, B. M., Hershey, S. G., and Zweifach, B. W., 1965, Effects of a synthetic analogue vasopressin on vascular smooth muscle, Proc. Soc. Exp. Biol. Med. 119: 258–261.PubMedGoogle Scholar
  13. Andrews, C. E., and Brenner, B. M., 1981, Relative contributions of arginine vasopressin and angio-tensin II to maintenance of systemic arterial pressure in the anesthetized water-deprived rat, Circ. Res. 48: 254–258.PubMedGoogle Scholar
  14. Ang, V. T. Y., and Jenkins, J. S., 1982, Blood-cerebrospinal fluid barrier to arginine-vasopressin, desmopressin and deglycinamide arginine-vasopressin in the dog, J. Endocrinol. 93: 319–325.PubMedGoogle Scholar
  15. Antoni, F. A., 1984, Characterization of high affinity binding sites for vasopressin in bovine adrenal medulla, Neuropeptides 4: 413–420.PubMedGoogle Scholar
  16. Arnauld, E., Czernichow, P., Fumoux, F., and Vincent, J.-D., 1977, The effects of hypotension and hypovolaemia on the liberation of vasopressin during haemorrhage in the unaenesthetized monkey, Pflugers Arch. 371: 193–200.PubMedGoogle Scholar
  17. Banks, F. O., 1976, Influence of antidiuretic hormone on intrarenal blood flow distribution in diabetes insipidus dogs and rats, Proc. Soc. Exp. Biol. Med. 151: 547–551.PubMedGoogle Scholar
  18. Bartelstone, H. J. and Nasmyth, P. A., 1965, Vasopressin potentiation of catecholamine actions in dog, rat, cat, and rat aortic strip, Am. J. Physiol. 208: 754–762.PubMedGoogle Scholar
  19. Beijer, H. J. M., Maas, A. H. J., and Charbon, G. A., 1984, A vasopressin-induced decrease in pancreatic blood flow and in pancreatic exocrine secretion in the anesthetized dog, Pflugers Arch. 400: 324–328.PubMedGoogle Scholar
  20. Berde, B., and Boissonnas, R. A., 1968, Basic pharmacological properties of synthetic analogues and homologues of the neurohypophysial hormones, in: Handbook of Experimental Pharmacology. Neurohypophysial Hormones and Similar Polypeptides (B. Berde, ed.), pp. 802–870, Springer-Verlag, Heidelberg.Google Scholar
  21. Berecek, K. H., Stocker, M., and Gross, F., 1980, Changes in renal vascular reactivity at various states of deoxycorticosterone hypertension in rats, Circulation 46: 619–624.Google Scholar
  22. Berecek, K. H., Barron, K. W., Webb, R. L., and Brody, M. J., 1982a, Vasopressin-central nervous system interactions in the development of DOCA hypertension, Hypertension 4(Suppl. II): 131–137.PubMedGoogle Scholar
  23. Berecek, K. H., Murray, R. D., Gross, F., and Brody, M. J., 1982b, Vasopressin and vascular reactivity in the development of DOCA hypertension in rats with hereditary diabetes insipidus, Hypertension 4: 3–12.PubMedGoogle Scholar
  24. Berecek, K. H., Webb, R. L., and Brody, M. J., 1982c, relationship between vasopressin and the anter-oventral third ventricle region in deoxycorticosterone/salt hypertension (Brattleboro rat model), in: The Brattleboro Rat (H. W. Sokol and H. Valtin, eds.), pp. 392–397, The New York Academy of Sciences, New York.Google Scholar
  25. Berecek, K. H., Webb, R. L., and Brody, M. J., 1983, Evidence for a central role for vasopressin in cardiovascular regulation, Am. J. Physiol. 244: H852–H859.PubMedGoogle Scholar
  26. Bie, P., and Warberg, J., 1983, Effects on intravascular pressures of vasopressin and angiotensin II in dogs, Am. J. Physiol. 245:R906-R914.Google Scholar
  27. Blei, A. T., Groszmann, R. J., Gusberg, R., and Conn, H. O., 1980, Comparison of vasopressin and triglycyllysine vasopressin on splanchnic and systemic hemodynamics in dogs. Dig. Dis. Sci. 25: 688–694.PubMedGoogle Scholar
  28. Blessing, W. W., Sved, A. F., and Reis, D. J., 1982, Elevated plasma vasopressin contributes to fulminating hypertension produced by functional impairment of AI catecholamine neurons in rabbit medulla, Clin. Sci. 63: 289s–292s.Google Scholar
  29. Bohus, B., Versteeg, C. A. M., deJohn, W., Cransberg, K., and Kooky, J. G., 1983, Neurohypophysial hormones and central cardiovascular control, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 445–457, Elsevier, Amsterdam.Google Scholar
  30. Brackett, D. J., Schaefer, C. F., and Wilson, M. F., 1983, The role of vasopressin in the maintenance of cardiovascular function during early endotoxin shock, in: Advances in Shock Research, Vol. 9 (S. M. Reichard, ed.), pp. 147–156, Alan R. Liss, New York.Google Scholar
  31. Brunner, D. B., Burnier, M., and Brunner, H. R., 1983, Plasma vasopressin in rats: Effect of sodium, angiotensin, and catecholamines, Am. J. Physiol. 244:H259-H265.Google Scholar
  32. Burnier, M., and Brunner, H. R., 1983, Pressor responses of rats to vasopressin: Effect of sodium, angiotensin, and catecholamines, Am. J. Physiol. 244:H253-H258.Google Scholar
  33. Burnier, M, Biollaz, J., Brunner, D. B., and Brunner, H. R., 1983, Blood pressure maintenance in awake dehydrated rats: Renin, vasopressin, and sympathetic activity, Am. J. Physiol. 245: H203–H209.PubMedGoogle Scholar
  34. Byrom, F. B., 1939, Morbid effects of vasopressin on the organs and vessels of rats, J. Pathol. 45: 1–15.Google Scholar
  35. Ciriello, J., and Calaresu, F. R., 1980, Role of paraventricular and supraoptic nuclei in central cardiovascular regulation in the cat, Am. J. Physiol. 239: R137–R142.PubMedGoogle Scholar
  36. Coleman, R. J., and Reppert, S. M., 1985, CSF vasopressin rhythm is effectively insulated from osmotic regulation of plasma vasopressin. Am. J. Physiol. 248: E346–E352.PubMedGoogle Scholar
  37. Collis, M. G., 1981, Vascular reactivity to vasopressin in DOCA-salt hypertensive rats, J. Pharm. Pharmacol. 33: 468–469.PubMedGoogle Scholar
  38. Commarato, M. A., and Lum, B. K. B., 1969, Cardiovascular interactions of amphetamine and ephed-rine with norepinephrine and with vasopressin, Eur. J. Pharmacol. 7: 125–134.PubMedGoogle Scholar
  39. Cort, J. H., Jeanjean, M. F., Thomson, A. E., and Nickerson, M., 1968, Effect of “hormonogen” forms of neurohypophysial peptides in hemorrhagic shock in dogs, Am. J. Physiol. 214: 455–462.PubMedGoogle Scholar
  40. Cort, J. H., Fischman, A. J., Dodds, W. J., Rand, J. H., and Schwartz, I. L. 1981, New category of vasopressin receptor in the central nervous system. Evidence that this receptor mediates the release of a humoral factor VIII-mobilizing principle, Int. J. Pept. Protein, Res. 17: 14–22.Google Scholar
  41. Cowley, A. W., Jr., 1978, Perspectives on the physiology of hypertension, in: Hypertension: Mechanisms, Diagnosis and Treatment (G. Onesti and A. N. Brest, eds.), pp. 1–22, F. A. Davis, Philadelphia.Google Scholar
  42. Cowley, A. W., Jr., 1982, Vasopressin and cardiovascular regulation, in: Cardiovascular Physiology, Vol. 4: International Review of Physiology, Vol. 26 (A. C. Guyton and J. E., Hall, eds.), pp. 189–242, University Park Press, Baltimore.Google Scholar
  43. Cowley, A. W., Jr., and Barber, B. J., 1983, Vasopressin vascular and reflex effects—A theoretical analysis, in: The Neurohypophysis. Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A., Cross and G. Leng, eds.), pp. 415–424, Elsevier, Amsterdam.Google Scholar
  44. Cowley, A. W., Jr., and DeClue, J. W., 1976, Quantification of baroreceptor influence on arterial pressure changes seen in primary angiotensin-induced hypertension in dogs, Circ. Res. 39: 779–787.PubMedGoogle Scholar
  45. Cowley, A. W., Jr., and Guyton, A. C., 1972, Quantification of intermediate steps in the renin-angio-tensin-vasoconstrictor feedback loop in the dog, Circ. Res. 30: 557–566.PubMedGoogle Scholar
  46. Cowley, A. W., Jr., Monos, E., and Guyton, A. G, 1974, Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood pressure in the dog, Circ. Res. 34: 505–514.PubMedGoogle Scholar
  47. Cowley, A. W., Jr., Switzer, S. J., and Guinn, M. M., 1980, Evidence and quantification of the vasopressin arterial pressure control system in the dog, Circ. Res. 46: 58–67.PubMedGoogle Scholar
  48. Cowley, A. W., Jr., Cushman, W. C., Quillen, E. W., Jr., Skelton, M. M, and Langford, H. G., 1981a, Vasopressin elevation in essential hypertension and increased responsiveness to sodium intake, Hypertension 3(Suppl I): 93–100.Google Scholar
  49. Cowley, A. W., Jr., Switzer, S. J., and Skelton, M. M, 1981b, Vasopressin, fluid, and electrolyte response to chronic angiotensin II infusion, Am. J. Physiol. 240: R130–R138.PubMedGoogle Scholar
  50. Cowley, A. W., Jr., Merrill, D. G, Quillen, E. W., Jr., and Skelton, M. M., 1984a, Long-term blood pressure and metabolic effects of vasopressin with servo-controlled fluid volume, Am. J. Physiol. 247: R537–R545.PubMedGoogle Scholar
  51. Cowley, A. W., Jr., Merrill, D. G, Osborn, J., and Barber, B. J., 1984b, Influence of vasopressin and angiotensin on baroreflexes in the dog, Circ. Res. 54: 163–172.PubMedGoogle Scholar
  52. Cowley, A. W., Jr., Liard, J. F., Skelton, M. M., Quillen, E. W., Jr., Osborn, J. W., Jr., and Webb, R. L., 1985a, Vasopressin-neural interactions in the control of cardiovascular function, in: Vasopressin (Robert W. Schrier, ed.), pp. 1–10 Raven, New York.Google Scholar
  53. Cowley, A. W., Jr., Skelton, M. M., and Velasquez, M. T., 1985b, Sex differences in the endocrine predictors of essential hypertension: Vasopressin versus renin, Hypertension 7(Suppl. I): 151–160.Google Scholar
  54. Crause, P., Boer, R., and Fahrenholz, F., 1984, Determination of the functional molecular size of vasopressin isoreceptors, FEBS Lett. 175: 383–386.PubMedGoogle Scholar
  55. Cristoforo, M. F., and Brody, M. J., 1968, Non-adrenergic vasoconstriction produced by halothane and cyclo-propane anesthesia, Anesthesiology 29: 44–56.PubMedGoogle Scholar
  56. Crofton, J. T., Share, L., Shade, R. E., Allen G, and Tarnowski, D., 1978, Vasopressin in the rat with spontaneous hypertension, Am. J. Physiol. 235: H361–H366.PubMedGoogle Scholar
  57. Crofton, J. T., Share, L., Shade, R. E., Lee-Kwon, W. J., Manning, M., and Sawyer, W. H., 1979, The importance of vasopressin in the development and maintenance of DOC-salt hypertension in the rat, Hypertension 1: 31–38.PubMedGoogle Scholar
  58. Crofton, J. T., Share, L., Wang, B. C., and Shade, R. E., 1980, Pressor responsiveness to vasopressin in the rat with DOC-salt hypertension, Hypertension 2: 424–431.PubMedGoogle Scholar
  59. Crofton, J. T., Share, L., Baer, P. G., Allen, C. M., and Wang, B. C., 1981, Vasopressin secretion in the New Zealand genetically hypertensive rat, Clin. Exp. Hypertens. 3: 975–989.PubMedGoogle Scholar
  60. De Jong, W., Versteeg, C. A. M., and Bohus, B., 1984, Inhibition of pressor responses induced by electrical stimulation of the mesencephalon by vasopressin and oxytocin, Clin. Exp. Hypertens. A6: 139–147.Google Scholar
  61. De Vries, G. J., Buijs, R. M., Van Leeuwen, F. W., Caffe, A. R., and Swaab, D.J., 1985, The vaso-pressinergic innervation of the brain in normal and castrated rats, J. Comp. Neurol. 233: 236–254.Google Scholar
  62. De Wied, D., Bohus, B., and Van Wimersma Reidanus, T., 1975, Memory deficit in rats with hereditary diabetes insipidus, Brain Res. 85: 152–156.Google Scholar
  63. Del Bo, A., Sved, A. F., and Reis, D. J., 1983, Fastigial stimulation releases vasopressin in amounts that elevate arterial pressure, Am. J. Physiol. 244: H687–H694.PubMedGoogle Scholar
  64. Dicker, S. E., 1953, A method for the assay of very small amounts of antidiuretic activity with a note on the antidiuretic titre of rats’ blood, J. Physiol. (Lond.) 122: 149–157.Google Scholar
  65. DiPette, D. J., Gavras, L, North, W. G., Brunner, H. R., and Gavras, H., 1982, Vasopressin in salt-induced hypertension of experimental renal insufficiency, Hypertension 4(Suppl. II): 25–30.Google Scholar
  66. Dogterom, J., and Buijs, R. M., 1980, Vasopressin and oxytocin distribution in rat brain: Radioim-munoassay and immunocytochemical studies, in: Neuropeptides and Neural Transmission, Vol. 7 (C. A., Marsan and W. Z. Traczyk, eds.), pp. 307–314, Raven, New York.Google Scholar
  67. Doris, P. A., and Bell, F. R., 1984, Vasopressin in plasma cerebrospinal fluid of hydrated and dehydrated steers, Neuroendocrinology 38: 290–296.PubMedGoogle Scholar
  68. Drapanas, T., Crowe, C. P., Shim, W. K. T., and Schenk, W. G., 1961, The effect of pitressin on cardiac output and coronary, hepatic, and intestinal blood flow. Surg. Gynecol. Obstet. 113: 484–489.PubMedGoogle Scholar
  69. du Vigneaud, V., Lawler, H. C., and Popenoe, E. A., 1953, Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary, J. Am. Chem. Soc. 75: 4880–4881.Google Scholar
  70. Dunn, F. L., Brennan, T. J., Nelson, A. E., and Robertson, G. L., 1973, The role of blood osmolality and volume in regulating vasopressin secretion in the rat, J. Clin. Invest. 52: 3213–3219.Google Scholar
  71. Ebert, T. J., Cowley, A. W., and Skelton, M., 1986, Vasopressin reduces cardiac function and augments cardiopulmonary baroreflex resistance increases in man, J. Clin. Invest. 77: 1136-142.Google Scholar
  72. Elijovich, F., Barry, C. R., Krakoff, L. R., and Kirchberger, M., 1984, Differential effect of vasopressin on angiotensin and norepinephrine pressor action in rats, Am. J. Physiol. 247: H973–H977.PubMedGoogle Scholar
  73. Elliott, J. M., West, M. J., and Chalmers, J., 1985, Effects of vasopressin on heart rate in conscious rabbits, J. Cardiovasc. Pharmacol. 7: 6–11.PubMedGoogle Scholar
  74. Ellis, M. E., and Grollman, A., 1949, The antidiuretic hormone in the urine in experimental and clinical hypertension, Endocrinology 44: 415–419.PubMedGoogle Scholar
  75. Ericsson, B. F., 1971, Effect of vasopressin on the distribution of cardiac output and organ blood flow in the anesthetized dog. Acta Chir. Scand. 137: 729–738.PubMedGoogle Scholar
  76. Ericsson, B. F., 1972, The effect of vasopressin on the distribution of cardiac output in the early phase of haemorrhagic shock in the anesthetized dog, Acta Chir. Scand. 138: 119–123.PubMedGoogle Scholar
  77. Errington, M. L., and Rochae Silva, M., 1974, On the role of vasopressin and angiotensin in the development of irreversible haemorrhagic shock, J. Physiol. (Lond.) 242: 119–141.Google Scholar
  78. Farini, F., 1913, Diabete insipido ed opoterapia, Gazz. Osped. Clin. 34: 1135–1139.Google Scholar
  79. Fejes-Toth, G., Fekete, A., and Walter, J., 1978, Effect of antidiuretic hormone and indomethacin on intrarenal microsphere distribution, Pflugers Arch. 376: 67–72.PubMedGoogle Scholar
  80. Frieden, J., and Keller, A. D., 1954, The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation, Circ. Res. 2: 214–220.PubMedGoogle Scholar
  81. Friedman, S. M, Friedman, C. L., and Nakashima, M., 1960, Accelerated appearance of DOCA hypertension in rats treated with pitressin, Endocrinology 67: 752–759.PubMedGoogle Scholar
  82. Ganten, U., Rascher, W., Lang, R. E., Dietz, R., Rettig, R., Unger, T., Taugner, R., and Ganten, D., 1983, Development of a new strain of spontaneously hypertensive rats homozygous for hypotha-lamic diabetes insipidus, Hypertension 5(Suppl. I): 119–128.Google Scholar
  83. Gardiner, S. M., and Bennett, T., 1982, The control of heart in rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain), in The Brattleboro Rat (H. W., Sokol and H. Valtin, eds.), pp. 363–374, Annals of the New York Academy of Science, New York.Google Scholar
  84. Gardiner, S. M., and Bennett, T., 1983, The cardiovascular and renal responses to short-term isolation in Brattleboro rats, Clin. Sci. 64: 377–382.PubMedGoogle Scholar
  85. Garvas, H., Hatsinikolaou, P., North, W. G., Breshnahan, M., and Gavras, I., 1982, Interaction of the sympathetic nervous system with vasopressin and renin in the maintenance of blood pressure, Hypertension 4: 400–405.Google Scholar
  86. Gerke, D. C., Frewin, D. B., and Frost, B. R., 1977, The synergistic vasoconstrictor effect of octapressin and catecholamines on the isolated rabbit ear artery, Aust. J. Exp. Biol. Med. Sci. 55: 737–740.PubMedGoogle Scholar
  87. Gilbey, M. P., Coote, J. H., Fleetwood-Walker, S., and Peterson, D. F., 1982, The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurons, Brain Res. 251: 283–290.PubMedGoogle Scholar
  88. Ginsburg, M., and Brown, L. M., 1956, Effect of anaesthetics and haemorrhage on the release of neurohypophysial antidiuretic, Br. J. Pharmacol. 11: 236–244.Google Scholar
  89. Goodman, L. S., and Gilman, A., 1955, The Pharmacological Basis of Therapeutics, Macmillan, New York.Google Scholar
  90. Gross, P. A., Travis, V. L., Horwitz, L., Schrier, R. W., and Anderson, R. J., 1982, Effect of desmo-pressin-induced water retention on systemic hemodynamics in rat, Am. J. Physiol. 243: H934–H940.PubMedGoogle Scholar
  91. Guo, G. B., Sharabi, F. M., Abboud, F. M., and Schmid, P. G., 1982, Vasopressin augments baroreflex inhibition of lumbar sympathetic nerve activity in rabbits, Circulation 66(Suppl. II): 34.Google Scholar
  92. Guyton, A. C., Coleman, T. G., Cowley, A. W., Jr., Scheel, K. W., Manning, R. D., Jr., and Norman, R. A., Jr., 1972, Arterial pressure regulation: Overriding dominance of the kidney in long-term regulation and in hypertension, Am. J. Med. 52: 584–594.PubMedGoogle Scholar
  93. Haack, D., and Mohring, J., 1978, Vasopressin-mediated blood pressure response to intraventricular injection of angiotensin II in the rat, Pflugers Arch. 373: 167–173.PubMedGoogle Scholar
  94. Hanley, M. R., Benton, H. P., Lightman, S. L., Todd, K., Bone, E. A., Fretten, P., Palmer, S., and Kirk, C. J., 1984, A vasopressin-like peptide in the mammalian sympathetic nervous system, Nature (Lond.) 309: 258–261.Google Scholar
  95. Harris, M. C., Bands, D., and Zerihun, L., 1982, Inputs from hypothalamic paraventricular nucleus to dorsal medullary nuclei in the rat, in: Neuroendocrinology of Vasopressin, Corticoliberin and Opiomelanocortins (A. J. Baertschi and J. J. Dreifuss, eds.), pp. 153–165, Academic, London.Google Scholar
  96. Hatzinikolaou, P., Garvas, H., Brunner, H. R., and Gavras, I., 1980, Sodium-induced elevation of blood pressure in the anephric state, Science 209: 935–936.PubMedGoogle Scholar
  97. Hatzinikolaou, P., Gavras, H., Brunner, H. R., and Gavras, I., 1981, Role of vasopressin, catechola-mines, and plasma volume in hypertonic saline-induced hypertension, Am. J. Physiol. 240: H827–H831.PubMedGoogle Scholar
  98. Hatzinikolaou, P., Gavras, L, North, W. G., Brunner, H. R., and Gavras, H., 1982, Interaction of the sympathetic nervous system with vasopressin and renin in the maintenance of blood pressure in rats, Clin. Sci. 63: 313s–317s.Google Scholar
  99. Heyndrickx, G. R., Boettcher, D. H., and Vatner, S. F., 1976, Effects of angiotensin, vasopressin, and methoxamine on cardiac function and blood flow distribution in conscious dogs, Am. J. Physiol. 231: 1579–1587.PubMedGoogle Scholar
  100. Hinojosa, C., and Haywood, J. R., 1984, Contribution of vasopressin and the sympathetic nervous system in the early phase of high sodium one-kidney renal hypertension, Hypertension 6: 848–854.PubMedGoogle Scholar
  101. Hock, C. E., Su, J. Y., and Lefer, A. M., 1984, Role of AVP in maintenance of circulatory homeostasis during hemorrhagic shock, Am. J. Physiol. 246: H174–H179.PubMedGoogle Scholar
  102. Hofbauer, K. G., Konrads, A., Bauereiss, K., Mohring, B., Mohring, J., and Gross, F., 1977, Vasopressin and renin in glycerol-induced acute renal failure in the rat, Circ. Res. 41: 424–428.PubMedGoogle Scholar
  103. Hofbauer, K. G., Forgiarini, P., and Kerr, F., 1982, Vasopressin receptor blockade and converting enzyme inhibition in glycerol-induced acute renal failure in rats, in: Acute Renal Failure (D. Seybold, ed.), pp. 139–151, S. Karger, Basel.Google Scholar
  104. Hofbauer, K. G., Mah, S. C., Baum, H.-P., Hanni, H., Wood, J. M., and Kraitz, J., 1984, Endocrine control of salt and water excretion: The role of vasopressin in DOCA-salt hypertension, J. Cardiovasc. Pharmacol. 6: S184–S191.PubMedGoogle Scholar
  105. Hoffman, W. E., 1980, Regional vascular effects of antidiuretic hormone in normal and sympathetic blocked rats, Endocrinology 107: 334–341.PubMedGoogle Scholar
  106. Howell, W. H., 1898, The physiological effects of extracts of the hypophysis cerebri and infundibular body, J. Exp. Med. 3: 245–258.PubMedGoogle Scholar
  107. Husain, M. K., Fernando, N., Shapiro, J., Kagan, A., and Glick, S. M., 1973, Radioimmunoassay of arginine vasopressin in human plasma, J. Clin. Endocrinol. Metab. 37: 616–625.PubMedGoogle Scholar
  108. Husain, M. K., Fernando, N., Shapiro, M., Kagan, A., and Glick, S. M., 1979, Vasopressin release due to manual restraint in the rat: Role of body compression and comparison with other stressful stimuli, Endocrinology 104: 641–644.PubMedGoogle Scholar
  109. Hutchinson, J. S., Schelling, P., Mohring, J., and Ganten, D., 1976, Pressor action of centrally perfused angiotensin II in rats with hereditary hypothalamic diabetes insipidus, Endocrinology 99: 819–823.PubMedGoogle Scholar
  110. Imai, Y., Nolan, P. L., and Johnston, C. I., 1983, Restoration of suppressed baroreflex sensitivity in rats with hereditary diabetes insipidus (Brattleboro rats) by arginine-vasopressin and DDAVP, Circ. Res. 53: 140–149.PubMedGoogle Scholar
  111. Ishikawa, S. E., and Schrier, R. W., 1984, Vascular effects of arginine vasopressin, angiotensin II, and norepinephrine in adrenal insufficiency, Am. J. Physiol. 246: H104–H113.PubMedGoogle Scholar
  112. Ishikawa, S. E., Goldberg, J. P., Schrier, D. M., Aisenbrey, G. A., and Schrier, R. W., 1984, Interrelationships between subpressor effects of vasopressin and other vasoactive hormones in the rat, Mineral Electrolyte Metab. 10: 184–189.Google Scholar
  113. Iwamoto, H. S., Rudolph, A. M., Keil, L. C., and Heymann, M. A., 1979, Hemodynamic responses of the sheep fetus to vasopressin infusion, Circ. Res. 44: 430–436.PubMedGoogle Scholar
  114. Izdebska, E., Jodkowski, J., and Trzebski, A., 1982, Central influence of vasopressin on baroreceptor reflex in normotensive rats and its lack in spontaneously hypertensive rats (SHR), Experientia 38: 594–595.PubMedGoogle Scholar
  115. Jamison, R. L., and Kriz, W., 1982, Urinary Concentrating Mechanism: Structure and Function, Oxford University Press, New York.Google Scholar
  116. Jard, S., 1983, Vasopressin isoreceptors in mammals: relation to cyclic AMP-dependent and cyclic AMP-independent transduction mechanisms, in: Current Topics in Membranes and Transport, (A. Kleinzeller, ed.), pp. 255–285, Academic, New York.Google Scholar
  117. Karashima, T., 1981, Effects of vasopressin on smooth muscle cells of guinea-pig mesenteric vessels, Br. J. Pharmacol. 72: 673–684.PubMedGoogle Scholar
  118. Katusic, Z. S., Shepherd, J. T., and Vanhoutte, P. M., 1984, Vasopressin causes endothelium-dependent relaxations of the canine basilar artery, Circ. Res. 55: 575–579.PubMedGoogle Scholar
  119. Keil, L. C., and Severs, W. B., 1977, Reduction in plasma vasopressin levels of dehydrated rats following acute stress, Endocrinology 100: 30–38.PubMedGoogle Scholar
  120. Kelly, R. T., Rose, J. C., Meis, P. J., Hargrave, B. Y., and Morris, M., 1983, Vasopressin is important for restoring cardiovascular homeostasis in fetal lambs subjected to hemorrhage, Am. J. Obstet. Gynecol. 146: 807–812.PubMedGoogle Scholar
  121. Kepinow, D., 1912, Uber den Synergismus von Hypophysisextrakt und Adrenalin, Naunyn-Schmie-debergs Arch. Exp. Pathol. Pharmakol 67: 247–274.Google Scholar
  122. Khokhar, A. M., and Slater, J. D. H., 1976, Increased renal excretion of arginine-vasopressin during mild hydropenia in young men with mild essential benign hypertension, Clin. Sci. Mol. Med. 61:(Suppl.3): 691s–694s.Google Scholar
  123. Kline, R. L., Patel, K. P., and Mercer, P. F., 1984, Decrease in peripheral sympathetic activity of diabetes insipidus (DI) rats after vasopressin replacement, Fed. Proc. 43: 1067.Google Scholar
  124. Knepel, W., and Meyer, D. K., 1980, Influence of converting enzyme inhibition on the release of vasopressin induced by angiotensin, Br. J. Pharmacol. 71: 337–341.PubMedGoogle Scholar
  125. Krogh, A., 1929, The Anatomy and Physiology of Capillaries, Yale University Press, New Haven, Connecticut.Google Scholar
  126. Lassoff, S., and Altura, B. M., 1980, Do pial terminal arterioles respond to local perivascular application of the neurohypophyseal peptide hormones, vasopressin and oxytocin?, Brain Res. 196: 266–269.PubMedGoogle Scholar
  127. Laycock, J. F., Penn, W., Shirley, D. G., and Walter, S. J., 1979, The role of vasopressin in blood pressure regulation immediately following acute haemorrhage in the rat, J. Physiol. (Lond.) 296: 267–275.Google Scholar
  128. Lee-Kwon, W. J., Share, L., Crofton, J. T., and Shade, R. E., 1981, Vasopressin in the rat with partial nephrectomy-salt hypertension, Clin. Exp. Hypertens. 3: 281–297.PubMedGoogle Scholar
  129. Liard, J. F., 1984, Atropine potentiates the pressor effect of arginine-vasopressin in conscious dogs, J. Cardiovasc. Pharmacol. 6: 867–871.PubMedGoogle Scholar
  130. Liard, J. F., 1985, Effects of arginine vasopressin on regional circulations, in: Vasopressin (R. W. Schrier, ed.), pp. 59–67, Raven, New York.Google Scholar
  131. Liard, J. F., 1986, Cardiovascular effects associated with antidiuretic activity of vasopressin after blockade of its vasoconstrictor action in dehydrated dogs, Circ. Res. 58: 631–640.PubMedGoogle Scholar
  132. Liard, J. F., and Spadone, J. G, 1984, Hemodynamic effects of antagonists of the vasoconstrictor action of vasopressin in conscious dogs, J. Cardiovasc. Pharmacol. 6: 713–719.PubMedGoogle Scholar
  133. Liard, J. F., Deriaz, O., Tschopp, M., and Schoun, J., 1981, Cardiovascular effects of vasopressin infused into the vertebral circulation of conscious dogs. Clin. Sci. 61: 345–347.PubMedGoogle Scholar
  134. Liard, J. F., Deriaz, O., Schelling, P., and Thibonnier, M., 1982, Cardiac output distribution during vasopressin infusion or dehydration in conscious dogs, Am. J. Physiol. 243: H663–H669.PubMedGoogle Scholar
  135. Livon, C., 1898, Secretions internes, glandes hypertensives, J. Compt. Rendu Soc Biol. (Paris) 50: 98.Google Scholar
  136. Lluch, S., Conde, M. V., Dieguez, G., Lopez De Pablo, A. L., Gonzalez, M. C., Estrada, C., and Gomez, B., 1984, Evidence for the direct effect of vasopressin on human and goat cerebral arteries, J. Pharmacol Exp. Ther. 228: 749–755.PubMedGoogle Scholar
  137. Lohmeier, T. E., Smith, M. J., Cowley, A. W., Jr., Manning, R. D., and Guyton, A. C., 1981, Is vasopressin an important hypertensive hormone? Hypertension 3: 416–425.PubMedGoogle Scholar
  138. Luerssen, T. G., and Robertson, G. L., 1980, Cerebrospinal fluid vasopressin and vasotocin in health and disease, in: Neurobiology of Cerebrospinal Fluid (J. H. Wood, ed.), pp. 613–623, Plenum, New York.Google Scholar
  139. Lumbers, E. R., and Potter, E. K., 1982, The effects of vasoactive peptides on the carotid baroreflex, Clin. Exp. Pharmacol Physiol. (Suppl) 7: 45–49.Google Scholar
  140. Lumbers, E. R., and Potter, E. K., 1983, Inhibition of the vagal component of the baroreceptor-car-dioinhibitory reflex by angiotensin III in dogs and sheep, J. Physiol. (Lond.) 336: 83–89.Google Scholar
  141. Lutherer, L. O., Smith, A. L., Chen, C. H., O’Leary, E. L., and Lutherer, B. C., 1983, The effect of angiotensin and vasopressin blockade separately and in combination with cerebellectomy on recovery from hemorrhagic hypotension, Circ. Shock 10: 329–340.PubMedGoogle Scholar
  142. Manning, R. D., Guyton, A. C., Coleman, T. G., and McCaa, R. E., 1979, Hypertension in dogs during antidiuretic hormone and hypotonic saline infusion, Am. J., Physiol. 236: H314–H322.Google Scholar
  143. Marchetti, J., Thibonnier, M., Gonzales, M. F., Corvol, P., and Menard, J., 1980, Dynamic study of antidiuretic hormone during benign mineralocorticoid and metacorticoid hypertension, Acta Endocrinol. (Copenh.) 95: 444–453.Google Scholar
  144. Marker, J. D., Miles, T. S., and Scroop, G. C., 1980, Modulation of the baroreceptor reflex by angiotensin II and other vasoactive drugs in anaesthetized greyhounds, Clin. Sci. 58: 7–13.PubMedGoogle Scholar
  145. Matsuguchi, H., and Schmid, P. G., 1982a, Pressor response to vasopressin and impaired baroreflex function in DOC-salt hypertension, Am. J. Physiol. 242: H44–H49.PubMedGoogle Scholar
  146. Matsuguchi, H., and Schmid, P. G., 1982b, Acute interaction of vasopressin and neurogenic mechanisms in DOC-salt hypertension, Am. J. Physiol. 242: H37–H43.PubMedGoogle Scholar
  147. Matsuguchi, H., Schmid, P. G., Van Orden, D., and Mark, A. L., 1981, Does vasopressin contribute to salt-induced hypertension in the Dahl strain?, Hypertension 3: 174–181.PubMedGoogle Scholar
  148. Matsuguchi, H., Sharabi, F. M., Gordon, F. J., Johnson, A. K., and Schmid, P. G., 1982, Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus solitarius region of the rat, Neuropharmacology 21: 687–693.PubMedGoogle Scholar
  149. McNeill, J. R., 1974, Intestinal vasoconstriction following diuretic-induced volume depletion: Role of angiotensin and vasopressin, Can. J. Physiol. Pharmacol. 52: 829–839.PubMedGoogle Scholar
  150. McNeill, J. R., Stark, R. D., and Greenway, C. V., 1979, Intestinal vasoconstriction after hemorrhage: Roles of vasopressin and angiotensin, Am. J. Physiol. 219: 1342–1347.Google Scholar
  151. Meisenberg, G., and Simmons, W. H., 1983, Peptides and the blood-brain barrier, Life Sci. 32: 2611–2623.PubMedGoogle Scholar
  152. Mens, W. B. J., Bowman, H. J., Bakker, E. A. D., and Greidamus, T. B., 1980, Differential effects of various stimuli on AVP levels in blood and cerebrospinal fluid. Eur. J. Pharmacol 68: 89–92.PubMedGoogle Scholar
  153. Merrill, D. C., Quillen, E. W., Jr., Skelton, M. M., and Cowley, A. W., Jr., 1983, Dehydration natri-uresis in the salt-deplete dog—Role of vasopressin and aldosterone, Fed. Proc. 42: 738.Google Scholar
  154. Michell, R. H., Kirk, C. J., and Billah, M. M., 1979, Hormonal stimulation of phosphatidylinositol breakdown, with particular reference to the hepatic effects of vasopressin, Biochem. Soc. Trans. 7: 861–865.PubMedGoogle Scholar
  155. Mohama, R. E., Joyner, W. L., and Gilmore, J. P., 1984, Comparative reactivity of hamster cheek pouch microvessels to arginine vasopressin and angiotensin II, Microcirc. Endoth. Lymph. 1: 397–413.Google Scholar
  156. Mohring, B., and Mohring, J., 1975, Plasma ADH in normal Long-Evans rats and in Long-Evans rats heterozygous and homozygous for hypothalamic diabetes insipidus, Life Sci. 17: 1307–1314.PubMedGoogle Scholar
  157. Mohring, J., Mohring, B., Petri, M., and Haack, D., 1978, Plasma vasopressin concentrations and effects of vasopressin antiserum on blood pressure in rats with malignant two-kdiney Goldblatt hypertension, Circ. Res. 42: 17–22.PubMedGoogle Scholar
  158. Mohring, J., Kintz, J., and Schoun, J., 1979, Studies on the role of vasopressin in blood pressure control of spontaneously hypertensive rats with established hypertension (SHR, stroke-prone strain), J. Cardiovasc, Pharmacol. 1: 593–608.Google Scholar
  159. Mohring, J., Glanzer, K., Maciel, J. A., Jr., Dusing, R., Kramer, H. J., Arbogast, R., and Koch-Weser, J., 1980a, Greatly enhanced pressor response to antidiuretic hormone in patients with impaired cardiovascular reflexes due to idiopathic orthostatic hypotension, J. Cardiovasc, Pharmacol 2: 367–376.Google Scholar
  160. Mohring, J., Schoun, J., Kintz, J., and McNeill, J. R., 1980b, Decreased vasopressin content in brain stem of rats with spontaneous hypertension, Naunym-Schmeidebergs Arch. Pharmacol. 315: 83–84.Google Scholar
  161. Mohring, J., Kintz, J., Schoun, J., and McNeill, J. R., 1981, Pressor responsiveness and cardiovascular reflex activity in spontaneously hypertensive and normotensive rats during vasopressin infusion, J. Cardiovasc. Pharmacol. 3: 948–957.PubMedGoogle Scholar
  162. Monos, E., Cox, R. H., and Peterson, L. H., 1978, Direct effect of physiological doses of arginine vasopressin on the arterial wall in vivo, Am. J. Physiol. 234: H167–H172.PubMedGoogle Scholar
  163. Montani, J. P. Liard, J. F., Schoun, J., and Mohring, J., 1980, Hemodynamic effects of exogenous and endogenous vasopressin at low plasma concentrations in conscious dogs, Circ. Res. 47: 346–355.PubMedGoogle Scholar
  164. Morfaux, C., and Bralet, J., 1977, Etude des circulations régionales chez le rat par utilisation de micro-spheres. Influence de la noradrenaline, de l’angiotensine et de la vasopressine, J. Phvsiol. (Paris) 8: 261–268.Google Scholar
  165. Morris, M., 1982, Neurohypophysial response to dehydration in the spontaneously hypertensive rat, Hypertension 4: 161–168.PubMedGoogle Scholar
  166. Morris, M., Keller, M., and Sundberg, D. K., 1983, Changes in paraventricular vasopressin and oxytocin during the development of spontaneous hypertension, Hypertension 5: 476–481.PubMedGoogle Scholar
  167. Morton, J. J., Padfield, P. L., and Forsling, M. L., 1975, A radioimmunoassay for plasma arginine vasopressin in man and dog: Application to physiological and pathological states, J. Endocrinol. 65: 411–424.PubMedGoogle Scholar
  168. Morton, J. J., Rio, C. G. D., and Hughes, M. J., 1982, Effect of acute vasopressin infusion on blood pressure and plasma angiotensin II in normotensive and DOCA-salt hypertensive rats, Clin. Sci. 62: 143–149.PubMedGoogle Scholar
  169. Moursi, M. M., Van Wylen, D. G. L., and D’Alecy, L. G., 1985, Regional blood flow changes in response to mildly pressor doses of triglycl desamino lysine and arginine vasopressin in the conscious dog, J. Pharmacol. Exp. Ther. 232: 360–368.PubMedGoogle Scholar
  170. Nair, U. C., Hasser, E. M., Undesser, K. P., and Bishop, V. S., 1984, Effect of vasopressin on arterial baroreflex control of renal sympathetic nerve activity during phenylephrine infusions, Fed. Proc. 43: 1068.Google Scholar
  171. Nakai, M., Yamane, Y., Umeda, Y., and Ogino, K., 1982, Vasopressin-induced pressor response elicited by electrical stimulation of solitary nucleus and dorsal motor nucleus of vagus of rat, Brain Res. 251: 164–168.PubMedGoogle Scholar
  172. Nakano, J., 1974, Cardiovascular responses to neurohypophysial hormones, in: Handbook of Physiology, Section 7: Endocrinology, Vol. IV: The Pituitary Gland and Its Neuroendocrine Control, Part 1 (P.. O. Greep and E. B Astwood. eds.). pp. 395–442. American Physiological Society, Washington, D.C.Google Scholar
  173. Nashold, B. S., Mannarino, E. M., and Wunderlich, M., 1961, Pressor-depressor blood pressure response in the cat after intraventricular injection of drugs, Nature 193: 1297–1298.Google Scholar
  174. Nussey, S. S., Ang, V. T. Y., Jenkins, J. S., Chowdrey, H. S., and Bisset, G. W., 1984, Brattleboro rat adrenal contains vasopressin, Nature (Lond.) 310: 64–66.Google Scholar
  175. Okuno, T., Winternitz, S. R., Lindheimer, M. D., and Oparil, S., 1983, Central catecholamine depletion, vasopressin, and blood pressure in the DOCA/NaCl rat, Am. J. Physiol. 244: H807–H813.PubMedGoogle Scholar
  176. Oliver, H., and Schafer, E. A., 1895, On the physiological action of extracts of the pituitary body and certain other glandular organs, J. Physiol. (Lond.) 18: 277–279.Google Scholar
  177. Osborn, J. W., Jr., Webb, R. L., and Cowley, A. W., Jr. 1987, Hemodynamic and autonomic effects of arginine vasopressin compared to angiotensin II in conscious rats, Am. J. Physiol. 252 (Heart Circ. Physiol. 21): H628–H637.PubMedGoogle Scholar
  178. Padfield, P. L., 1977, Vasopressin in hypertension, Am. Heart J. 94: 531–532.PubMedGoogle Scholar
  179. Padfield, P. L., Lever, A. F., Brown, J. J., and Robertson, J. I. S., 1976, Changes of vasopressin in hypertension: Cause or effect?, Lancet l(Part 2):1255-1257.Google Scholar
  180. Padfield, P. L., Brown, J. J., Lever, A. F., Morton, J. J., and Robertson J. I. S., 1981, Blood pressure in acute and chronic vasopressin excess. Studies of malignant hypertension and the syndrome of inappropriate antidiuretic hormone secretion, N. Engl. J. Med. 304: 1067–1070.PubMedGoogle Scholar
  181. Palier, M. S., and Linas, S. L., 1983, Role of vasopressin in support of blood pressure in potassium deficient rats, Kidney Int. 24: 342–347.Google Scholar
  182. Pang, C. C. Y., 1983, Effect of vasopressin antagonist and saralasin on regional blood flow following hemorrhage, Am. J. Physiol. 245: H749–H755.PubMedGoogle Scholar
  183. Partridge, W. M. 1983, Neuropeptides and the blood-brain barrier, Annu. Rev. Physiol. 45: 73–82.Google Scholar
  184. Penit, J., Faure, M, and Jard, S., 1983, Vasopressin and angiotensin II receptors in rat aortic smooth muscle cells in culture, Am. J. Physiol. 244: E72–E82.PubMedGoogle Scholar
  185. Philbin, D. M., Wilson, N. E., Sokoloski, J., and Coggins, C., 1976, Radioimmunoassay of antidiuretic hormone during morphine anesthesiology, Can. Anaesth. Soc. J. 23: 290–295.PubMedGoogle Scholar
  186. Pittman, Q. J., and Lawrence, D., 1982, Descending hypothalamic pathways: Electrophysiological investigations of their possible functions, in: Neuroendocrinology of Vasopressin, Corticoliberin and Opiomelanocortins (A. J. Baertschi and J. J. Dreifuss, eds.), pp 167–176, Academic, London.Google Scholar
  187. Preibisz, J. J., Sealey, J. E., Laragh, J. H., Cody, R. J., and Woksler, B. B., 1983, Plasma and platelet vasopressin in essential hypertension and congestive heart failure, Hypertension 5(Suppl. I): 129–138.Google Scholar
  188. Pullan, P. T., Johnston, C. I. Anderson, W. P., and Korner, P. I., 1981, Plasma vasopressin in blood pressure homeostasis and in experimental renal hypertension, Am. J. Physiol. 239: H81–H87.Google Scholar
  189. Quillen, E. W., Jr., and Cowley, A. W. Jr., 1983, Influence of volume changes on osmolality-vasopressin relationship in conscious dogs, Am. J. Physiol. 244: H73–H79.PubMedGoogle Scholar
  190. Rabito, S. F., Carretero, O. A., and Scicli, A. G., 1981, Evidence against a role of vasopressin in the maintenance of high blood pressure in mineralocorticoid and renovascular hypertension, Hypertension 3: 34–38.PubMedGoogle Scholar
  191. Rascher, W., Weidmann, E., and Gross, F., 1981, Vasopressin in the plasma of stroke-prone spontaneously hypertensive rats, Clin. Sci. 61: 295–298.PubMedGoogle Scholar
  192. Rascher, W., Lang, R. E., Unger, T., Ganten, D., and Gross, F., 1982, Vasopressin in brain of spontaneously hypertensive rats, Am. J. Physiol. 242: H496–H499.PubMedGoogle Scholar
  193. Rascher, W., Lang, R. E., Ganten, D., Meffle, H., Taubitz, M., Unger, T., and Gross, F., 1983, Vasopressin in deoxycorticosterone acetate hypertension of rats: A hemodynamic analysis, J. Cardiovasc. Pharmacol. 5: 418–425.PubMedGoogle Scholar
  194. Rasmussen, S. N., 1974, Effects of osmotic diuresis and water diuresis on intrarenal red cell and plasma volumes in the rat, Pflugers Arch. 398: 1–11.Google Scholar
  195. Rettig, R., Lang, R. E., Rascher, W., Unger, T., and Ganten, D., 1982, Brain peptides and blood pressure regulation, Clin. Sci. 63: 269s–283s.Google Scholar
  196. Robertson, G. L., 1977, The regulation of vasopressin function in health and disease, Recent Prog. Horm. Res. 33: 333–385.Google Scholar
  197. Robertson, G. L., Mahr, E. A., Athar, S., and Sinha, T., 1973, Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma, J. Clin. Invest. 52: 2340–2352.PubMedGoogle Scholar
  198. Robinson, C. A. F., 1983, Neurohypophysial peptides in cerebrospinal fluid, Prog. Brain Res. 60: 129–145.PubMedGoogle Scholar
  199. Rochae Silva, M., Jr., and Rosenberg, M., 1969, The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation, J. Physiol. (Lond.) 202: 535–557.Google Scholar
  200. Rockhold, R. W., Share, L., Crofton, J. T., and Brooks, D. P., 1984, Cardiovascular response to vasopressin vasopressor antagonist administration during water deprivation in the rat, Neuroendocrinology 38: 139–144.PubMedGoogle Scholar
  201. Rose, C. E., Godine, R. L., Rose, K. Y., Anderson, R. J., and Carey, R. M. 1984, Role of arginine vasopressin and angiotensin II in cardiovascular responses to combined acute hypoxemia and hypercapnic acidosis in conscious dogs, J. Clin. Invest. 74: 321–331.PubMedGoogle Scholar
  202. Rose, J. C., Jones, C. M, Kelly, R. T., Hargrave, B. Y., and Meis, P. J., 1983, A vasopressin antagonist blocks the norepinephrine and epinephrine responses to hemorrhage in the fetus, Endocrinology 113: 2314–2316.PubMedGoogle Scholar
  203. Ross, C. A., Ruggiero, D. A., and Reis, D. J., 1981, Afferent projections to cardiovascular portions of the nucleus of the tractus solitarius in the rat, Brain Res. 223: 402–408.PubMedGoogle Scholar
  204. Rurak, D. W., 1978, Plasma vasopressin levels during hypoxaemia and the cardiovascular effects of exogenous vasopressin in foetal and adult sheep, J. Physiol. (Lond.) 277: 341–357.Google Scholar
  205. Saameli, K., 1968, The circulatory actions of the neurohypophysial hormones and similar polypeptides, in: Handbook of Experimental Pharmacology, Vol. 23 (B. Berde, ed.), pp. 545–611, Springer-Verlag, Heidelberg.Google Scholar
  206. Sagawa, K., and Watanabe, K. 1965, Summation of bilateral carotid sinus signals in the barostatic reflex, Am. J. Physiol. 209: 1278–1286.PubMedGoogle Scholar
  207. Saito, T., and Yajima, Y., 1982, Development of DOCA-salt hypertension in the Brattleboro rat, in: The Brattleboro Rat (H. W. Sokol and H. Valtin, eds.), pp. 309–318, Annals of the New York Academy of Science, New York.Google Scholar
  208. Sawyer, W. H., 1971, Neurohypophysial hormones, Pharmacol. Rev. 13: 225–227.Google Scholar
  209. Sawyer, W. H., and Manning, M., 1973, Synthetic analogs of oxytocin and the vasopressins, Annu. Rev. Pharmacol. 13: 5–18.Google Scholar
  210. Scher, A. M., and Young, A. C., 1963, Servoanalysis of carotid sinus reflex effects of peripheral resistance, Circ. Res. 12: 152–162.PubMedGoogle Scholar
  211. Schiffrin, E. L., and Genest, J., 1983, 3H-vasopressin binding to the rat mesenteric artery, Endocrinology 113: 409–411.PubMedGoogle Scholar
  212. Schmid, P. G., Abboud, F. M., Wendling, M. G., Ramberg, E. S., Mark, A. L., Heistad, D. D., and Eckstein, J. W., 1974, Regional vascular effects of vasopressin: Plasma levels and circulatory responses, Am. J. Physiol. 227: 998–1004.PubMedGoogle Scholar
  213. Schmid, P. G., Sharabi, F. M., Matsuguchi, H., Schmidt Davis, and Lund, D. D. 1982, Vasopressin and neurogenic control of the circulation, in: Salt and Hypertension (J. Iwai, ed.), pp. 203–230, Igaku-Shoin, New York.Google Scholar
  214. Schmitt, S. L., Taylor, K., Schmidt, R., Van Orden, D., and Williamson, H. E., 1981, The role of volume depletion, antidiuretic hormone and angiotensin II in the furosemide-induced decrease in mesenteric conductance in the dog, J. Pharmacol. Exp. Ther. 219: 407–414.PubMedGoogle Scholar
  215. Schwartz, J., and Reid, I. A., 1981, Effect of vasopressin blockade on blood pressure regulation during hemorrhage in conscious dogs, Endocrinology 109: 1778–1780.PubMedGoogle Scholar
  216. Schwartz, J., and Reid, I. A., 1983a, Role of vasopressin in blood pressure regulation in conscious water-deprived dogs, Am. J. Physiol. 244: R74–R77.PubMedGoogle Scholar
  217. Schwartz, J., Keil, L. C., Maselli, J., and Reid, I. A., 1983b, Role of vasopressin in blood pressure regulation during adrenal insufficiency, Endocrinology 112: 234–238.PubMedGoogle Scholar
  218. Schwartz, J., Liard, J. F., and Cowley, A. W., Jr., 1985, Cardiovascular actions of the antidiuretic activity of vasopressin, Am. J. Physiol. 249: 1001–1008.Google Scholar
  219. Share, L., 1965, Effects of carotid occlusion and left atrial distension on plasma vasopressin, Am. J. Physiol. 208: 219–223.PubMedGoogle Scholar
  220. Share, L., Crofton, J. T., Lee-Kwon, W. J., and Shade, R. E., 1982, One clip, one kidney hypertension in rats with hereditary hypothalamic diabetes insipidus, Clin. Exp. Hypertens. A4: 1261–1270.Google Scholar
  221. Shido, O., Kifune, A., and Nagasaka, T., 1984, Baroreflex suppression of heat production and fall in body temperature following peripheral administration of vasopressin in rats, Jpn. J. Physiol. 34: 397–406.PubMedGoogle Scholar
  222. Silverman, A. J., and Zimmerman, E. A., 1983, Magnocellular neurosecretory system, Annu. Rev. Neurosci. 6: 357–380.PubMedGoogle Scholar
  223. Simpson P., and Forsling, M., 1977, The effects of halothane on plasma vasopressin during cardio-pulmonary bypass, Clin. Endocrinol. (Oxf.) 7: 33–39.Google Scholar
  224. Skowsky, W. R., Rosenbloom, A. A. and Fisher, D. A., 1974, Radioimmunoassay measurement of arginine vasopressin in serum: Development and application, J. Clin. Endocrin. Metab. 38: 278–287.Google Scholar
  225. Smith, M. J., Cowley, A. W., Jr., Guyton, A. C., and Manning, R. D., 1979, Acute and chronic effects of vasopressin on blood pressure, electrolytes, and fluid volumes, Am. J. Physiol. 237: F232–F240.PubMedGoogle Scholar
  226. Sofroniew, M. V., and Weindl, A., 1981, Central nervous system distribution of vasopressin, oxytocin, and neurophysin, in: Endogenous Peptides and Learning and Memory Processes (J. L. Martinez, ed.), pp. 327–369, Academic, New York.Google Scholar
  227. Sofroniew, M. V., Weindl, A., Schrell, U., and Wetzstein, R., 1981, Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain, Acta Histochem. (Suppl.): 19–95.Google Scholar
  228. Sokol, H. W., and Zimmerman, E. A., 1982, The hormonal status of the Brattleboro rat, in: The Brattleboro Rat (H. W., Sokol and H. Valtin, eds.), pp. 535–559, The New York Academy of Sciences, New York.Google Scholar
  229. Starling, E. H., and Verney, E. B., 1924, The secretion of urine as studied on the isolated kidney, Proc. R. Soc. Lond. (Biol.) 97: 321–363.Google Scholar
  230. Stegner, H., Artman, H. G., Leake, R. D., and Fisher, D. A., 1983, Does DDAVP(l-Desamino-8-D-Arginine-Vasopressin) cross the blood-CSF barrier?, Neuroendocrinology 37: 262–265.PubMedGoogle Scholar
  231. Sueta, C. A., Hutchins, P. M., and Dusseau, J. W., 1983, Norepinephrine-induced potentiation of arginine vasopressin reactivity in arterioles of the spontaneously hypertensive rat, Hypertension 5: 321–327.PubMedGoogle Scholar
  232. Swanson, L. W., and Sawchenko, P. E., 1983, Hypothalamic integration: Organization of the paraven-tricular and supraoptic nuclei, Annu. Rev. Neurosci. 6: 269–324.PubMedGoogle Scholar
  233. Szadowska, A., Szmigielska, H., Szmigielski, A., and Mazur, M., 1979, Effect of propranolol and reserpine on the development of vasopressin hypertension in rat, Agressologie 20: 51–56.PubMedGoogle Scholar
  234. Szczepanska-Sadowska, E., 1972, The activity of hypothalamo-hypophysial antidiuretic system in conscious dogs, Pflugers Arch. 335: 139–146.PubMedGoogle Scholar
  235. Szczepanska-Sadowska, E., 1973, Hemodynamic effects of a moderate increase of the plasma vasopressin level in conscious dogs, Pflugers Arch. 338: 313–322.PubMedGoogle Scholar
  236. Thorn, N. A., 1958, Mammalian antidiuretic hormone, Physiol. Rev. 38: 169–195.PubMedGoogle Scholar
  237. Thrasher, T. N., Nistal-Herrera, J. F., Keil, L. C., and Ramsay, D. J., 1981, Satiety and inhibition of vasopressin secretion after drinking in dehydrated dogs, Am. J. Physiol. 240: E394–E401.PubMedGoogle Scholar
  238. Thurau, L., and Levine, D. Z., 1971, The renal circulation, in: The Kidney. Morphology, Biochemistry, Physiology (C. Rouiller and A. F. Muller, eds.), pp. 1–70, Academic, New York.Google Scholar
  239. Tran, L. D., Montastruc, J. L., and Montastruc, P., 1982, Effects of lysine-vasopressin and oxytocin on central cardiovascular control, Br. J. Pharmacol. 77: 69–73.PubMedGoogle Scholar
  240. Turlapaty, P. D. M. V., and Altura, B. M., 1982, Effects of neurohypophyseal peptide hormones on isolated coronary arteries: Role of magnesium ions, Magnesium 1: 122–128.Google Scholar
  241. Undesser, K. P., Hasser, E. M., Haywood, J. R., Johnson, A. K., and Bishop, V. S., 1985, Interactions of vasopressin with the area postrema in arterial baroreflex function in conscious rabbits, Circ. Res. 56: 410–417.PubMedGoogle Scholar
  242. Varma, S., Bhuwaneshwar, P. J., and Bhargava, K. P., 1969, Mechanism of vasopressin-induced bradycardia in dogs, Circ. Res. 54: 787–792.Google Scholar
  243. Vernersson, E., 1984, Cardiac function and central circulation in lysine-vasopressin treatment of experimental burns, Acta Anaesthesiol Scand. 28: 325–330.PubMedGoogle Scholar
  244. Versteeg, C. A. M., Bohus, B., and De Jong, W., 1982, Inhibition of centrally-evoked pressor responses by neurohypophyseal peptides and their fragments, Neuropharmacology 21: 1359–1364.PubMedGoogle Scholar
  245. Von den Velden, R., 1913, Die Nierenwirkung von Hypophysen extrakten beim Menschen, Berl. Klin. Wochenschr. 50: 2083–2086.Google Scholar
  246. Von Cyon, E., 1898, Die physiologischen Herzgifte, II. Hypophysenextracte, Pflugers Arch. 73: 339–373.Google Scholar
  247. Waeber, B., Schaller, M. D., Nussberger, J., Bussien, J. P., Hofbauer, K. G., and Brunner, H. R., 1984, Skin blood flow reduction induced by cigarette smoking: Role of vasopressin, Am. J. Physiol. 247: H895–H901.PubMedGoogle Scholar
  248. Wagner, H. N., and Braunwald, E., 1956, The pressor effect of the antidiuretic principle of the posterior pituitary in orthostatic hypotension, J. Clin. Invest. 35: 1412–1418.PubMedGoogle Scholar
  249. Wang, B. C., Share, L., Crofton, J. T., and Kimura, T. 1981, changes in vasopressin concentration in plasma and cerebrospinal fluid in response to hemorrhage in anesthetized dogs, Neuroendocrinology 33: 61–66.PubMedGoogle Scholar
  250. Webb, R. L., Osborn, J. W., Jr., and Cowley, A. W., Jr. 1986, Cardiovascular actions of vasopressin: Baroreflex modulation in the conscious rat, Am. J. Physiol. 251(Heart Circ. Physiol. 20): H1244–H1251.Google Scholar
  251. Weitzman, R. E., Fisher, D. A., DiStefano, J. J., and Bennett, C. M., 1977, Episodic secretion of arginine vasopressin, Am. J. Physiol. 233: E32–E36.PubMedGoogle Scholar
  252. Weitzman, R. E., Reviczky, A., Oddie, T. H., and Fisher, D. A., 1980, Effect of osmolality of arginine vasopressin and renin release after hemorrhage, Am. J. Physiol. 238: E62–E69.PubMedGoogle Scholar
  253. Wetterlin, S., Aronsen, K. F., and Ahlgren, I., 1978, Distribution of cardiac output in burned mice after treatment with triglycl vasopressin, Eur. Surg. Res. 10: 134–141.PubMedGoogle Scholar
  254. Wood, J. H., 1983, Physiology and pharmacology of peptide, steroid, and other hormones in cerebrospinal fluid, in: Neurobiology of Cerebrospinal Fluid (J. H. Wood, ed.), pp. 43–65, Plenum, New York.Google Scholar
  255. Woods, R. L., and Johnston, C. I., 1982, Role of vasopressin in hypertension: Studies using the Brattleboro rat, Am. J. Physiol. 242: F727–F732.PubMedGoogle Scholar
  256. Woods, R. L., and Johnston, C. I., 1983, Contribution of vasopressin to the maintenance of blood pressure during dehydration, Am. J. Physiol. 245: F615–F621.PubMedGoogle Scholar
  257. Woods, R. L., Abrahams, J. M, Kincaid-Smith, P. and Johnston, C. I., 1983, Malignant hypertension in Brattleboro (vasopressin-deficient) rats. J. Hypertens. 1: 37–43.PubMedGoogle Scholar
  258. Wu, W. H., Zbuzek, V. K., and Bellevue, C., 1980, Vasopressin release during cardiac operation, J. Thorac. Cardiovasc. Surg. 79: 83–90.PubMedGoogle Scholar
  259. Zerbe, R. L., Bayorh, A., and Feuerstein, G., 1982a, Vasopressin: An essential pressor factor for blood pressure recovery following hemorrhage, Peptides 3: 509–514.PubMedGoogle Scholar
  260. Zerbe, R. L., Feuerstein, G., Meyer, D. K., and Kopin, I. J., 1982b, Cardiovascular, sympathetic, and renin-angiotensin system responses to hemorrhage in vasopressin-deficient rats, Endocrinology 111: 608–613.PubMedGoogle Scholar
  261. Zimmerhackl, B., Robertson, C. R., and Jamison, R. L., 1985, Effect of arginine vasopressin (AVP) on vasa recta blood flow, Kidney Int. 27: 302.Google Scholar
  262. Zimmerman, E. A., 1981, The organization of oxytocin and vasopressin pathways, in: Neurosecret ion and Brain Peptides (J. B. Martin, S. Reichlin, and K. L. Bick, eds.), pp. 63–75, Raven, New York.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  1. 1.Department of PhysiologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations