Skip to main content

Heavy-Ion Damage in Solids

  • Chapter
Treatise on Heavy-Ion Science

Abstract

Much of the impetus for studying irradiation damage in solids stems from the demands of nuclear technology. The radiation fields encountered in all critical areas of present and projected reactors present an intensely hostile environment. At typical reactor operating temperatures a whole range of largely irreversible and deleterious effects may occur in reactor components—creep, swelling, embrittlement, sputtering etc.—which lead to serious degredation in properties and impose severe limitations on reactor design. Perhaps the best-known example is radiation-induced void swelling, originally discovered in studies of metal fuel cladding by Cawthorne and Fulton (Ca 67), and subsequently found to be a major potential problem in structural components, which has had enormous implications in metallurgical design criteria for fast reactors. It has been estimated that the cost benefit of designing void-resistant low-swelling alloys for use in reactors into the next century is more than $10 billion!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Agramovich and V. V. Kirsanor, Soy. Phys. Usp. 19:1 (1976).

    Google Scholar 

  2. S. C. Agarwal, G. Ayrault, D. I. Potter, A. Taylor, and F. V. Nolfi, J. Nucl. Mater. 85, 86: 653 (1979).

    Article  ADS  Google Scholar 

  3. N. A. G. Ahmed, C. E. Christodoulides, and G. Carter, Radiat. Eff. 38: 221 (1975).

    Google Scholar 

  4. M. Antoni, A. Manara, and P. Leusi, Proc. Intl. Topical Conference of Physics of SiO2 and its Interfaces, Yorktown Heights, New York (1978).

    Google Scholar 

  5. G. W. Arnold, G. B. Krefft, and C. B. Norris, Phys. Lett. 25: 540 (1974).

    Google Scholar 

  6. K. H. G. Ashbee and L. W. Hobbs, Proceedings Conference on Point Defect Behaviour and Diffusional Processes, Bristol, U.K. (1976), p. 79.

    Google Scholar 

  7. J. F. Bates and W. G. Johnston, Proceedings of the Conference on Radiation Effects in Breeder Reactor Structural Materials, Scotsdale, Arizona (1977), p. 625.

    Google Scholar 

  8. R. M. Berman, Bettis (U.S.A.) Report WAPD-BT-21, p. 33 (1960).

    Google Scholar 

  9. J. R. Beeler and D. G. Besco, J. Appl. Phys. 34: 287 (1963).

    Article  Google Scholar 

  10. J. R. Beeler, J. Appl. Phys. 37: 3000 (1966).

    Google Scholar 

  11. B. L. Eyre, J. Phys. F 3: 422 (1973).

    Google Scholar 

  12. M. L. Bleiburg and J. W. Bennett, eds., Proceedings of the Conference on Radiation Effects in Breeder Reactor Structural Materials, Scotsdale, Arizona (1977).

    Google Scholar 

  13. J. T. Buswell, Phil. Mag. 22: 787 (1970).

    Google Scholar 

  14. R. Bullough, B. L. Eyre, and K. Krishan, Proc. R. Soc. London A346: 81 (1975).

    Article  ADS  Google Scholar 

  15. R. Bullough and M. R. Hayns, Proceedings 2nd International Symposium on Continuum Models of Discrete Systems. Mt. Gabriel, Canada (1977).

    Google Scholar 

  16. C. Cawthorne and E. J. Fulton, Nature 216: 575 (1967).

    Article  ADS  Google Scholar 

  17. G. Carter, D. G. Armour, S. E. Donnelly, and R. Webb, Radiat. Eff. 36: 1 (1978).

    Article  Google Scholar 

  18. P. J. Chandler, F. Jaque and P. D. Townsend, Radiat. Eff 43: 45 (1979).

    Google Scholar 

  19. J. W. Corbett and L. C. Ianniello, eds., Proceedings Conference on Radiation-Induced Voids in Metals, Albany, New York (1971).

    Google Scholar 

  20. J. R. Crawford and R. Dean Dragsdorf, J. Appl. Phys. 44: 385 (1973).

    Article  ADS  Google Scholar 

  21. J. Delaplace, N. Azam, L. Le Naour, M. Lott, and C. Fiche, J. Nucl. Mater. 47: 278 (1973).

    Article  ADS  Google Scholar 

  22. H. Diepers and J. Diehl, Phys. Stat. Sol. 16: K109 (1966).

    Article  ADS  Google Scholar 

  23. J. Diehl, H. Diepers, and B. Hertel, Can. J. Phys. 46: 647 (1968).

    Article  ADS  Google Scholar 

  24. H. Diepers, Phys. Stat. Sol. 24: 235 (1967).

    Article  ADS  Google Scholar 

  25. C. H. Diane and J. L. Gisdon, Proc. IBBM Conference (1978).

    Google Scholar 

  26. K. H. Ecker, Radiat. Eff. 23: 171 (1974).

    Article  Google Scholar 

  27. E. P. Eer Nisse, J. Appl. Phys. 45: 167 (1974).

    Article  ADS  Google Scholar 

  28. C. A. English, B. L. Eyre, K. Shoaib, and T. M. Williams, J. Nucl. Mater. 58: 220 (1975).

    Article  ADS  Google Scholar 

  29. C. A. English, B. L. Eyre, and J. Summers, Phil. Mag. 34: 603 (1976).

    Google Scholar 

  30. C. A. English, B. L. Eyre, A. F. Bartlett, and H. N. G. Wadley, Phil. Mag. 35: 533 (1977).

    Article  ADS  Google Scholar 

  31. C. A. English, B. L. Eyre, and S. M. Holmes, J. Phys. F 10: 1065 (1980).

    Article  ADS  Google Scholar 

  32. C. A. English and M. L. Jenkins, J. Nucl. Mater. 96: 341 (1981).

    Google Scholar 

  33. C. Erginsoy, G. H. Vineyard, and A. Englert, Phys. Rev. 133: A595 (1964).

    Google Scholar 

  34. C. Erginsoy, G. H. Vineyard, and A. Shinzu, Phys. Rev. 139: A118 (1965).

    Google Scholar 

  35. B. D. Evans, J. Comas, and P. R. Malinberg, Phys. Rev. B 6: 2453 (1972).

    Article  ADS  Google Scholar 

  36. R. L. Fleischer, P. B. Price, and R. M. Walker, J. Appl. Phys. 36: 3645 (1965).

    Google Scholar 

  37. H. Föll and M. Wilkins, Phys. Stat. Sol. (a) 39:561 (1977).

    Google Scholar 

  38. F. A. Garner, R. W. Powell, S. Diamond, T. Lauritzen, A. F. Rowcliffe, J. A. Sprague, and D. Keefer, Proceedings International Conference on Radiation Effects in Breeder Reactor Structural Materials, Scotsdale, Arizona (1977), p. 543.

    Google Scholar 

  39. J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, Phys. Rev. 120:1229 (1960).

    Google Scholar 

  40. L. D. Glowinski, C. Fiche, and M. Lott, J. Nucl. Mater. 47: 295 (1973).

    Article  ADS  Google Scholar 

  41. L. D. Glowinski and C. Fiche, J. Nucl. Mater. 61: 22 (1976).

    Google Scholar 

  42. L. D. Glowinski and C. Fiche, J. Nucl. Mater. 61: 29 (1976).

    Google Scholar 

  43. L. D. Glowinski, J. M. Lanore, C. Fiche, and Y. Adda, J. Nucl. Mater. 61: 41 (1976).

    Google Scholar 

  44. B. Hertel, J. Diehl, R. Gotthardt, and H. Sultze, in Applications of Ion Beams to Metals, Plenum Press, New York (1974), p. 507.

    Google Scholar 

  45. B. Hertel, Phil. Mag. 40: 331 (1979).

    Google Scholar 

  46. L. M. Howe, J. F. McGurn, and R. W. Gilbert, Acta. Met. 14: 801 (1966).

    Google Scholar 

  47. D. K. Holmes and M. T. Robinson, Atomic Collisions in Solids, Plenum Press, New York (1975), p. 225.

    Google Scholar 

  48. J. E. Hobbs and A. D. Marwick, Radial. Eff. Lett. 58: 83 (1981).

    Google Scholar 

  49. J. A. Hudson and B. Ralph, Phil. Mag. 25: 265 (1972).

    Article  ADS  Google Scholar 

  50. J. A. Hudson and S. J. Ashby, the Physics of Irradiation produced Voids Consultants Symposium, Harwell, England (1974), p. 140.

    Google Scholar 

  51. W. Jäger and M. Wilkens, Phys. Stat. Sol. (a) 32:89 (1975).

    Google Scholar 

  52. M. L. Jenkins, Phil. Mag. 29: 813 (1974).

    Google Scholar 

  53. M. L. Jenkins and M. Wilkins, Phil. Mag. 34: 1155 (1976).

    Google Scholar 

  54. M. L. Jenkins, K. H. Katerbau, and M. Wilkins, Phil. Mag. 34: 1141 (1976).

    Google Scholar 

  55. M. L. Jenkins, C. A. English, and B. L. Eyre, Phil. Mag. A 38: 97 (1978).

    Article  ADS  Google Scholar 

  56. Je 79)M. L. Jenkins, N. G. Norton, and C. A. English, Phil. Mag. A 40: 131 (1979).

    Google Scholar 

  57. E. Johnson and J. A. Ytterhus, Phil. Mag. 28: 489 (1973).

    Article  ADS  Google Scholar 

  58. W. G. Johnston, T. Lauritzen, J. H. Rosolowski, and A. M. Turkalo, J. Nucl. Mater. 54: 24 (1974).

    Article  ADS  Google Scholar 

  59. R. Kelly and H. M. Naguib, Proceedings International Conference on Atomic Collision Phenomena in Solids, North-Holland, Amsterdam (1970), p. 172.

    Google Scholar 

  60. G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18: 1 (1955).

    Article  ADS  Google Scholar 

  61. N. Q. Lam and R. Kelly, Can. J. Phys. 50: 1887 (1972).

    Google Scholar 

  62. V. Levy, N. Azam, L. Nenaour, G. Didout, and J. Delaplace, Proceedings International Conference on Radiation Effects in Breeder Structural Materials, Scotsdale, Arizona (1977), p. 709.

    Google Scholar 

  63. J. Lindhard, M. Scharff, and H. E. Schiott, K. Dan. Vid. Selsk. Mat. Fys. Medd 33: 1 (1963).

    Google Scholar 

  64. K. L. Van de Lugt, J. Comas, and E. A. Wolicki, J. Phys. Chem. Sol. 30: 2486 (1969).

    Article  Google Scholar 

  65. B. C. Masters, Phil. Mag. 11: 881 (1965).

    Article  ADS  Google Scholar 

  66. D. J. Mazey and R. S. Barnes, Proceedings Sixth International Congress for Electron Microscopy Kyoto, Japan (1966), p. 365.

    Google Scholar 

  67. D. J. Mazey, R. S. Nelson, and R. S. Barnes, Phil. Mag. 17: 1145 (1968).

    Article  ADS  Google Scholar 

  68. D. J. Mazey, J. A. Hudson, and R. S. Nelson, J. Nucl. Mater. 41: 257 (1971).

    Article  ADS  Google Scholar 

  69. M. D. Matthews, Harwell Report A.E.R.E., R6802 (1971).

    Google Scholar 

  70. A. D. Marwick and R. B. Piller, Radiat. Eff. 33: 245 (1977).

    Article  Google Scholar 

  71. L. A. Mansur, Nucl. Technol. 40: 5 (1978).

    Google Scholar 

  72. A. D. Marwick, W. A. D. Kennedy, D. J. Mazey, and J. A. Hudson, Scr. Met. 12: 1015 (1978).

    Article  Google Scholar 

  73. D. J. Mazey, D. R. Harries, and J. A. Hudson, J. Nucl. Mater. 89: 155 (1980).

    Article  ADS  Google Scholar 

  74. K. L. Merkle, Phys. Stat. Sol. 18: 173 (1966).

    Article  ADS  Google Scholar 

  75. J. B. Mitchell, J. A. Davies, L. M. Howe, R. S. Walker, K. B. Winterbon, G. Foti, and J. A. Moore, Proceedings of the Fourth International Conference on Ion Implantation, Osaka, Japan (1974).

    Google Scholar 

  76. J. A. Moore, G. Carter, and A. W. Tinsley, Radiat. Eff. 25: 49 (1975).

    Article  Google Scholar 

  77. H. M. Naguib and R. Kelly, J. Phys. Chem. Solids 33: 1751 (1972).

    Article  ADS  Google Scholar 

  78. H. M. Naguib, J. F. Singleton, W. A. Grant, and G. Carter, J. Mater. Sci. 78: 1633 (1973).

    Article  ADS  Google Scholar 

  79. H. M. Naguib and R. Kelly, Radiat. Eff. 25: 1 (1975).

    Article  Google Scholar 

  80. H. M. Naguib and R. Kelly, Radiat. Eff. 25: 79 (1975).

    Article  Google Scholar 

  81. J. Narayan, O. S. Oen, and T. S. Noggle, J. Nucl. Mater. 71: 160 (1977).

    Article  ADS  Google Scholar 

  82. R. S. Nelson and D. J. Mazey, UKAEA Report, AERE-R 6046 (1969).

    Google Scholar 

  83. R. S. Nelson, D. J. Mazey, and J. A. Hudson, J. Nucl. Mater. 41: 257 (1971).

    Article  Google Scholar 

  84. R. S. Nelson, J. A. Hudson, D. J. Mazey, G. P. Walters, and T. M. Williams, Proceedings International Conference on Radiation Induced Voids in Metals. State Univ., Albany (1971).

    Google Scholar 

  85. R. S. Nelson, D. J. Mazey, and J. A. Hudson, Proceedings BNES Conference, Voids formed by Irradiation of Reactor Materials Reading, England (1971), p. 191.

    Google Scholar 

  86. R. S. Nelson, The Physics of Irradiation Produced Voids, Consult Symp. Harwell, England (1974).

    Google Scholar 

  87. V. A. Nikolaer and V. P. Perelygin, Prib. Tekh. Eksp. 2: 7 (1976).

    Google Scholar 

  88. M. J. Norgett, M. T. Robinson, and I. M. Torrens, Harwell Report TP 494 (1972).

    Google Scholar 

  89. T. S. Noggle, B. R. Appleton, J. M. Williams, O. S. Oen, J. A. Biggerstaff, and T. Inoata, Scientific and Industrial Applications of Small Accelerators, Inst. Electr. Electron Eng., New York (1976), p. 255.

    Google Scholar 

  90. P. R. Okamoto and H. Wiedersich, J. Nucl. Mater. 53: 336 (1974).

    Article  ADS  Google Scholar 

  91. R. C. Piller and A. D. Marwick, J. Nucl. Mater. 71: 309 (1978).

    Article  ADS  Google Scholar 

  92. D. Pooley, Proc. Phys. Soc. (London) 87: 257 (1966).

    Article  ADS  Google Scholar 

  93. S. F. Pugh, M. L. Loretto, and D. I. R. Norris, Proceedings Brit. Nucl. Energy Soc. Conference on Voids formed by the Irradiation of Reactor Materials, Reading, England (1971).

    Book  Google Scholar 

  94. M. D. Rechtin and H. Wiedersich, Radial. Eff. 31: 181 (1977).

    Article  Google Scholar 

  95. L. E. Rehn, P. R. Okamoto, D. I. Potter, and H. Wiedersich, J. Nucl. Mater. 74: 242 (1978).

    Article  ADS  Google Scholar 

  96. M. D. Rechtin, Radial. Eff. 42: 129 (1979).

    Article  Google Scholar 

  97. M. T. Robinson and I. Torrens, Phys. Rev. 39: 5008 (1974).

    Google Scholar 

  98. T. M. Robinson and M. L. Jenkins, Phil. Mag. 43: 999 (1981).

    Google Scholar 

  99. M. O. Ruault, H. Bernas, and J. Chaumont, Phil. Mag. 39A: 757 (1979).

    Article  Google Scholar 

  100. J. O. Schiffgens, D. W. Schwarz, R. G. Ariyasu, and S. E. Cascadden, Radiat. Eff. 39: 221 (1978).

    Article  Google Scholar 

  101. T. Schober, Phys. Stat. Sol. (a) 1: 307 (1970).

    Article  ADS  Google Scholar 

  102. F. Sietz and J. A. Koehler, Solid State Phys. 2: 307 (1956).

    Google Scholar 

  103. V. K. Sethi and P. R. Okamoto, Proceedings Symposium on Irradiation Phase Stability, Pittsburg, Pennsylvania (1980).

    Google Scholar 

  104. R. H. Silsbee, J. Appl. Phys. 28: 1246 (1957).

    Google Scholar 

  105. P. Sigmund, G. P. Scheidler, and G. Roth, BNL 50083 (C-52): 374 (1978).

    Google Scholar 

  106. P. Sigmund, Appl. Phys. Lett. 25: 169 (1974).

    Article  ADS  Google Scholar 

  107. J. A. Sprague, J. E. Westmoreland, F. A. Smidt Jr., and P. R. Malinberg, J. Nucl. Mater. 54: 286 (1974).

    Article  ADS  Google Scholar 

  108. J. A. Spitznagel, F. W. Wiffen, and F. V. Nolfi, J. Nucl. Mater. 85, 86:629 (1979).

    Google Scholar 

  109. A. Y. Stathopoulos, Harwell Report AERE-R 9784, Phil. Mag. A 44: 285 (1981).

    Article  ADS  Google Scholar 

  110. A. Y. Stathopoulos, C. A. English, B. L. Eyre, and P. B. Hirsch, Harwell Report, AERE-R 9785, Phil. Mag. A 44: 309 (1981).

    Article  ADS  Google Scholar 

  111. A. Tenenbaum, Phil. Mag. 37: 731 (1978).

    Google Scholar 

  112. M. W. Thompson, Defects and Radiation Damage in Metals, Cambridge University Press, Cambridge (1969).

    Google Scholar 

  113. L. E. Thomas, T. Schober, and R. W. Balluffi, Radiat. Eff. 1: 257 (1969).

    Article  ADS  Google Scholar 

  114. D. A. Thompson and R. S. Walker, Radiat. Eff. 30: 91 (1978).

    Google Scholar 

  115. I. M. Torrens and M. T. Robinson, in Proceedings of International Conference on Radiation-Induced Voids in Metals, Albany, New York (1972), p. 734.

    Google Scholar 

  116. I. M. Torrens and M. T. Robinson, in Proceedings of Conference on Interatomic Potentials and Simulation of Lattice Defects, Plenum Press, New York (1972), p. 423.

    Book  Google Scholar 

  117. J. A. Venables, in Atomic Collision Phenomena in Solids, North-Holland, Amsterdam (1970), p. 132.

    Google Scholar 

  118. R. S. Walker and D. A. Thompson, Radiat. Eff. 37: 113 (1978).

    Article  Google Scholar 

  119. J. E. Westmoreland and P. Sigmund, Radiat. Eff. 6: 189 (1970).

    ADS  Google Scholar 

  120. C-Y-Wei and D. N. Seidman, Phil. Mag. A 37: 257 (1978).

    Google Scholar 

  121. C-Y-Wei, M. I. Current, and D. N. Seidman, Cornell University Materials Science Center Report No. 4235, Phil. Mag. A 44: 459 (1981).

    Article  ADS  Google Scholar 

  122. C-Y-Wei and D. N. Seidman, Cornell University Materials Science Center, Report No 4088, Phil. Mag. A 43: 1419 (1981).

    Google Scholar 

  123. K. B. Winterbon, P. Sigmund, and J. B. Sanders, K. Dan. Vid. Selsk. Mat. Fys. Medd 37:No. 14 (1970).

    Google Scholar 

  124. M. M. Wilson, Phil. Mag. 24: 1023 (1971).

    Google Scholar 

  125. M. M. Wilson and P. B. Hirsch, Phil. Mag. 25: 983 (1972).

    Article  ADS  Google Scholar 

  126. M. Wilkens, Proceedings of International Conference on Fundamental Aspects of Radiation Damage in Metals, USERDA Conf. 751006-Pi, (M. T. Robinson and F. Young, eds. ), (1976), p. 98.

    Google Scholar 

  127. T. M. Williams and B. L. Eyre, Proceedings 6th European Congress on Electron Microscopy, Jerusalem, Israel (1976), p. 550.

    Google Scholar 

  128. T. M. Williams, D. R. Arkell, and B. L. Eyre, J. Nucl. Mater. 68: 69 (1977).

    Article  ADS  Google Scholar 

  129. T. M. Williams and D. R. Arkell, J. Nucl. Mater. 80: 78 (1979).

    Article  Google Scholar 

  130. T. M. Williams, J. Nucl. Mater. 78: 28 (1979).

    Google Scholar 

  131. T. M. Williams, J. Nucl. Mater. 88: 217 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

English, C.A., Jenkins, M.L. (1985). Heavy-Ion Damage in Solids. In: Bromley, D.A. (eds) Treatise on Heavy-Ion Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8103-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8103-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8105-5

  • Online ISBN: 978-1-4615-8103-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics