Skip to main content

UV Radiation Effects

DNA Repair and Mutagenesis

  • Chapter
The Science of Photobiology

Abstract

The first indication that cells might have the capacity to recover from radiation damage was the observation that minor modifications in the postirradiation treatment of the cells (e.g., growth media, temperature, etc.) had a marked effect upon the ultimate viability of irradiated cells. Thus in 1937, Hollaender and Claus found that higher survival levels of UV-irradiated fungal spores could be obtained if they were allowed to remain in water or salt solution for a period of time before assaying for survival. Roberts and Aldous(1) extended these observations by showing that the shapes of the UV radiation survival curves for Escherichia coli could be changed drastically by holding the irradiated cells in media devoid of an energy source for various times before plating on nutrient agar to assay for survival (Fig. 4-1). The molecular basis of this phenomenon, known as liquid-holding recovery, will be discussed along with other “recovery phenomena” in Section 4.1.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Roberts and E. Aldous, Recovery from ultraviolet irradiation in Escherichia coli, J. Bacteriol. 57, 363–375 (1949).

    CAS  Google Scholar 

  2. E. C. Friedberg, DNA Repair, W. H. Freeman, New York (1985).

    Google Scholar 

  3. E. C. Friedberg, U. K. Ehmann, and J. I. Williams, Human diseases associated with defective DNA repair, Adv. Radiat. Biol. 8, 85–174 (1979).

    CAS  Google Scholar 

  4. K. B. Hellman, G. B. Schuller, and W. R. Lewis, Immunological defects in human radiation sensitive disorders, in: Topics in Photomedicine (K. C. Smith, ed.), pp. 143–182, Plenum Press, New York (1984).

    Google Scholar 

  5. R. H. Haynes and B. A. Kunz, DNA repair and mutagenesis in yeast, in: Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance, Monograph 11A, pp. 371–414, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1981).

    Google Scholar 

  6. E. C. Friedberg and B. A. Bridges (eds.), Cellular Responses to DNA Damage, Alan R. Liss, New York (1983).

    Google Scholar 

  7. E. C. Friedberg and P. C. Hanawalt (eds.), DNA Repair: A Laboratory Manual of Research Procedures, Vol. 1, Marcel Dekker, New York, (1981), Vol. 2 (1983), Vol. 3 (1988).

    Google Scholar 

  8. D. E. Lea, Actions of Radiation on Living Cells, Cambridge University Press, London (1955) (Reprinted 1962).

    Google Scholar 

  9. W. Harm, Biological Effects of Ultraviolet Radiation, Cambridge University Press, Cambridge (1980).

    Google Scholar 

  10. R. H. Haynes, The influence of repair processes on radiobiological survival curves, in: Cell Survival After Low Doses of Radiation: Theoretical and Clinical Implications (T. Alper, ed.), pp. 197–208, Wiley, New York (1975).

    Google Scholar 

  11. R. H. Haynes, F. Eckardt, and B. A. Kunz, The DNA damage-repair hypothesis in radiation biology: Comparison with classical hit theory. Br. J. Cancer 49, suppl. VI, 81–90 (1984).

    Google Scholar 

  12. P. A. Swenson, Physiological responses of Escherichia coli to far-ultraviolet radiation, in: Photochemical and Photobiological Reviews, Vol. 1 (K. C. Smith, ed.), pp. 269–387, Plenum Press, New York (1976).

    Google Scholar 

  13. M. Tang and K. C. Smith, The expression of liquid holding recovery in ultraviolet-irradiated Escherichia coli requires a deficiency in growth medium-dependent DNA repair, Photochem. Photohiol. 32, 763–769 (1980).

    Article  CAS  Google Scholar 

  14. M. Bertrand and D. F. Deen, Factors influencing the recovery from potentially lethal damage (PLD) in mammalian cells in vitro and in vivo, Cancer Treat. Rev. 7, 1–15 (1980).

    Article  PubMed  CAS  Google Scholar 

  15. R. C. Sharma, N. J. Sargentini, and K. C. Smith, New mutation (mmrA1) in Escherichia coli K-12 that affects minimal medium recovery and postreplication repair after UV irradiation, J. Bacteriol. 154, 743–747 (1983).

    PubMed  CAS  Google Scholar 

  16. R. C. Sharma and K. C. Smith, A mechanism for rich-medium inhibition of the repair of daughter-strand gaps in the deoxyribonucleic acid of UV-irradiated Escherichia coli K12 uvrA, Mutation Res. 146, 177–183 (1985).

    CAS  Google Scholar 

  17. N. J. Sargentini, W. P. Diver, and K. C. Smith, The effect of growth conditions on inducible, recA-dependent resistance to X-rays in Escherichia coli. Radiat. Res. 93, 364–380 (1983).

    CAS  Google Scholar 

  18. N. J. Sargentini and K. C. Smith, Quantitation of the involvement of the recA, recB, recC, recF, recJ, recN, lexA, radA, radB, uvrD, and umuC genes in the repair of X-ray-induced DNA double-strand breaks in Escherichia coli, Radiat. Res. 107, 58–72 (1986).

    CAS  Google Scholar 

  19. E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev. 40, 869–907 (1976).

    PubMed  CAS  Google Scholar 

  20. G. C. Walker, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbiol. Rev. 48, 60–93 (1984).

    PubMed  CAS  Google Scholar 

  21. G. C. Walker, Inducible DNA repair systems, Annu. Rev. Biochem. 54, 425–437 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. M. Radman, Is there SOS induction in mammalian cells? Photochem. Photobiol. 32, 823–830 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. T. G. Rossman and C. B. Klein, Mammalian SOS system: A case of misplaced analogies, Cancer Invest. 3, 175–187 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. G. M. Hahn, Hyperthermia and Cancer, Plenum Press, New York (1982).

    Google Scholar 

  25. B. Demple and J. Halbrook, Inducible repair of oxidative DNA damage in Escherichia coli, Nature 304, 466–468 (1983).

    CAS  Google Scholar 

  26. P. C. Lee, B. R. Bochner, and B. N. Ames, AppppA, heat-shock stress, and cell oxidation, Proc. Natl. Acad. Sci. USA 80, 7496–7500 (1983).

    Article  PubMed  CAS  Google Scholar 

  27. R. M. Tyrrell, A common pathway for protection of bacteria against damage by solar UVA (334 nm, 365 nm) and an oxidising agent (H2O2), Mutation Res. 145, 129–136 (1985).

    PubMed  CAS  Google Scholar 

  28. W. Harm, C. S. Rupert, and H. Harm, The study of photoenzymatic repair of UV lesions in DNA by flash photolysis, Photophysiology 6, 279–324 (1971).

    CAS  Google Scholar 

  29. D. A. Youngs and K. C. Smith, Genetic location of the phr gene of Escherichia coli K-12, Mutation Res. 51, 133–137 (1978).

    Article  Google Scholar 

  30. A. Sancar and C. S. Rupert, Correction of the map location for the phr gene in Escherichia coli K-12, Mutation Res. 51, 139–143 (1978).

    Article  Google Scholar 

  31. A. Sancar and G. B. Sancar, Escherichia coli DNA photolyase is a flavoprotein, J. Mol. Biol. 172, 223–227 (1984).

    Article  PubMed  CAS  Google Scholar 

  32. E. C. Friedberg, K. H. Cook, J. Duncan, and K. Mortelmans, DNA repair enzymes in mammalian cells, in: Photochemical and Photobiological Reviews, Vol. 2 (K. C. Smith, ed.), pp. 263–322, Plenum Press, New York (1977).

    Google Scholar 

  33. I. Husain, B. van Houten, D. C. Thomas, M. Abdel-Monem, and A. Sancar, Effect of DNA polymerase I and DNA helicase II on the turnover rate of UvrABC excision nuclease, Proc. Natl. Acad. Sci. USA 82, 6774–6778 (1985).

    Article  PubMed  CAS  Google Scholar 

  34. P. C. Hanawalt, P. K. Cooper, A. K. Ganesan, R. S. Lloyd, C. A. Smith, and M. E. Zolan, Repair responses to DNA damage: Enzymatic pathways in E. coli and human cells, J. Cellular Biochem. 18, 271–283 (1982).

    Article  CAS  Google Scholar 

  35. K. C. Smith and R. C. Sharma, A model for the recA-dependent repair of excision gaps in UV-irradiated Escherichia coli, Mutation Res. 183, 1–9 (1987).

    CAS  Google Scholar 

  36. J. E. Cleaver, Repair processes for photochemical damage in mammalian cells, Adv. Radiat. Biol. 4, 1–75 (1974).

    CAS  Google Scholar 

  37. T. Lindahl, DNA repair enzymes, Annu. Rev. Biochem. 51, 61–87 (1982).

    Article  PubMed  CAS  Google Scholar 

  38. K. C. Smith, T. V. Wang, and R. C. Sharma, recA-Dependent DNA repair in UV-irradiated Escherichia coli, J. Photochem. Photobiol., B:Biology 1, 1–11 (1987).

    Article  CAS  Google Scholar 

  39. A. K. Ganesan, Persistance of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli, J. Mol. Biol. 87, 103–119 (1974).

    CAS  Google Scholar 

  40. A. J. Fornace, Recombination of parent and daughter strand DNA after UV-irradiation in mammalian cells, Nature 304, 552–554 (1983).

    Article  PubMed  CAS  Google Scholar 

  41. R. H. Rothman, T. Kato, and A. J. Clark, The beginning of an investigation of the role of recF in the pathways of metabolism of ultraviolet-irradiated DNA in Escherichia coli, in: Molecular Mechanisms for Repair of DNA (P. C. Hanawalt and R. B. Setlow, eds.), pp. 283–291, Plenum Press, New York (1975).

    Google Scholar 

  42. T. V. Wang and K. C. Smith, Mechanisms for recF-dependent and recB-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB, J. Bacteriol. 156, 1093–1098 (1983).

    CAS  Google Scholar 

  43. R. C. Sharma and K. C. Smith, A minor pathway of postreplication repair in Escherichia coli is independent of the recB, recC and recF genes, Mutation Res. 146, 169–176 (1985).

    PubMed  CAS  Google Scholar 

  44. W. A. Franklin and W. A. Haseltine, The role of the (6-4) photoproduct in ultraviolet light-induced transition mutants in E. coli, Mutation Res. 165, 1–7 (1986).

    CAS  Google Scholar 

  45. J. S. Lebkowski, S. Clancy, J. H. Miller, and M. P. Calos, The lacI shuttle: Rapid analysis of the mutagenic specificity of ultraviolet light in human cells, Proc. Natl. Acad. Sci. USA 82, 8606–8610 (1985).

    Article  PubMed  CAS  Google Scholar 

  46. M. P. Calos, Mutation of autonomously replicating plasmids, in: Gene Transfer (R. Kucherlapati, ed.), pp. 243–261, Plenum Press, New York (1986).

    Google Scholar 

  47. N. J. Sargentini, R. C. Bockrath, and K. C. Smith, Three mechanisms for ultraviolet radiation mutagenesis in Escherichia coli K-12 uvrB5: Specificity for the production of back and suppressor mutants, Mutation Res. 106, 217–224 (1982).

    Article  PubMed  CAS  Google Scholar 

  48. T. V. Wang and K. C. Smith, Role of the umuC gene in postreplication repair in UV-irradiated Escherichia coli K-12 uvrB, Mutation Res. 145, 107–112 (1985).

    PubMed  CAS  Google Scholar 

  49. C. Lu, R. H. Scheuermann, and H. Echols, Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (ϵ) of DNA polymerase III: A possible mechanism for SOS-induced targeted mutagenesis, Proc. Natl. Acad. Sci. USA 83, 619–623 (1986).

    Article  PubMed  CAS  Google Scholar 

  50. B. A. Bridges, R. Woodgate, M. Ruiz-Rubio, F. Sharif, S. G. Sedgwick, and U. Hubscher, Current understanding of UV-induced base pair substitution mutation in E. coli with particular reference to the DNA polymerase III complex, Mutation Res. 181, 219–226 (1987).

    Article  PubMed  CAS  Google Scholar 

  51. N. J. Sargentini and K. C. Smith, umuC-dependent and umuC-independent γ- and UV-radiation mutagenesis in Escherichia coli, Mutation Res. 128, 1–9 (1984).

    CAS  Google Scholar 

  52. N. J. Sargentini and K. C. Smith, Spontaneous mutagenesis: The roles of DNA repair, replication, and recombination, Mutation Res. 154, 1–27 (1985).

    PubMed  CAS  Google Scholar 

  53. M. Radman and R. Wagner, Mismatch repair in Escherichia coli, Annu. Rev. Genet. 20, 523–528 (1986).

    CAS  Google Scholar 

  54. T. V. Wang and K. C. Smith, Inviability of dam recA and dam recB cells of Escherichia coli is correlated with their inability to repair DNA double-strand breaks produced by mismatch repair, J. Bacteriol. 165, 1023–1025 (1986).

    PubMed  CAS  Google Scholar 

  55. K. H. Kraemer, M. M. Lee, and J. Scotto, DNA repair protects against cutaneous and internal neoplasia: Evidence from xeroderma pigmentosum, Carcinogenesis 5, 511–514 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Smith, K.C. (1989). UV Radiation Effects. In: Smith, K.C. (eds) The Science of Photobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8061-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8061-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43059-6

  • Online ISBN: 978-1-4615-8061-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics