Skip to main content

Cell-Mediated Immunity in Cytomegalovirus Infections

  • Chapter

Part of the book series: The Viruses ((VIRS))

Abstract

The many interactions between cytomegalovirus (CMV) and host cellular immunity include some of the most clinically significant, complex, and fascinating problems in viral immunology. Most clinically important diseases caused by CMV occur in individuals with deficient cellular immunity (Meyers, this volume). Because of increasing numbers of indi viduals with deficiences of this type and the imminent potential for effective modulation of immune responses, there is a rather pressing need to understand the specific roles of the various components of the immune system in CMV infections. In addition, CMV itself can induce both profound immunosuppressive effects and significant immunopathology. As a result of recent progress in immunology, exciting opportunities have emerged to develop an understanding of these phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo, T., and Balch, C. M., 1981, A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1), J. Immunol 127:1024.

    PubMed  CAS  Google Scholar 

  • Bancroft, G. J., Shellam, G. R., and Chalmer, J. E., 1981, Genetic influences on the augmentation of natural killer cells during murine cytomegalovirus infection: Correlation with patterns of resistance, J. Immunol. 126:988.

    PubMed  CAS  Google Scholar 

  • Betts, R. F., Freeman, R. B., Douglas, R. G., and Talley, T. E., 1977, Clinical manifestations of renal allograft derived primary cytomegalovirus infection, Am. J. Dis. Child. 131:759.

    PubMed  CAS  Google Scholar 

  • Bixler, G. S., and Booss, J., 1981, Adherent spleen cells from mice acutely infected with cytomegalovirus suppress the primary antibody response in vitro, J. Immunol. 127:129.

    Google Scholar 

  • Booss, J., and Wheelock, E. F., 1977, Progressive inhibition of T-cell function preceding clinical signs of cytomegalovirus infection in mice, J. Infect. Dis. 135:478.

    Article  PubMed  CAS  Google Scholar 

  • Bukowski, J. F., Woda, B. A., Habu, S., Okumura, K., and Welsh, R. M., 1983, Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo, J. Immunol. 131:1531.

    PubMed  CAS  Google Scholar 

  • Burlington, D. B., Djeu, J. Y., Wells, M., and Quinnan, G. V., 1984, Large granular lymphocytes provide an accessory function in the in vitro development of influenza A virus-specific cytotoxic T cells, J. Immunol, (in press).

    Google Scholar 

  • Carney, W. P., Rubin, R. H., Hoffman, R. A., Hansen, W. P., Healey, K., and Hirsch, M. S., 1981, Analysis of T lymphocyte subsets in cytomegalovirus mononucleosis, J. Immunol. 126:2114.

    PubMed  CAS  Google Scholar 

  • Diamond, R. D., Keller, R., Lee, G., and Finkel, D., 1977, Lysis of cytomegalovirus-infected human fibroblasts and transformed human cells by peripheral blood lymphoid cells from normal human donors, Proc. Soc. Exp. Biol. Med. 154:259.

    PubMed  CAS  Google Scholar 

  • Djeu, J. Y., Heinbough, J. A., Vieira, W. D., Holden, H. T., and Herberman, R. B., 1979, The effect of immunopharmacological agents on mouse natural cell-mediated cytotoxicity and on its augmentation by poly I:C, Immuno-pharmacology 1:231.

    Article  CAS  Google Scholar 

  • Djeu, J. Y., Heinbough, J. A., Vieira, W. D., Holden, H. T., and Herberman, R. B., 1982, Positive self regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes-viruses, J. Exp. Med. 156:1222.

    Article  PubMed  CAS  Google Scholar 

  • Durum, S. K., and Gershon, R. K., 1982, Interleukin 1 can replace the requirement for I-A-positive cells in the proliferation of antigen-primed T cells, Proc. Nat. Acad. Sci. USA 79:4747.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, J. J., Benjamin, W. R., Hilfiker, M. L., Howard, M., Farrar, W. L., and Fuller-Farrar, J., 1982, The biochemistry, biology and role of interleukin-2 in the induction of cytotoxic T cell and antibody-forming B cell responses, Immunol. Rev. 63:129.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, W. L., Johnson, H. M., and Farrar, J. J., 1981, Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin-2, J. Immunol. 126:1120.

    PubMed  CAS  Google Scholar 

  • Gidlund, M., Orn, A., Wigzell, H., Senik, A., and Gresser, I., 1978, Enhanced NK cell activity in mice injected with interferon and interferon inducers, Nature 273:759.

    Article  PubMed  CAS  Google Scholar 

  • Grundy, J. E., Mackenzie, J. S., and Stanley, N. F., 1981, Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection, Infect. Immun. 32:277.

    PubMed  CAS  Google Scholar 

  • Grundy, J. E., Trapman, J., Allan, J. E., Shellam, G. R., and Melief, C. J. M., 1982, Evidence for a protective role of interferon in resistance to murine cytomegalovirus and its control by non-H-2 linked genes, Infect. Immun. 37:143.

    PubMed  CAS  Google Scholar 

  • Herberman, R. B., and Holden, H. T., 1978, Natural cell-mediated immunity, Adv. Cancer Res. 17:305.

    Article  Google Scholar 

  • Ho, M., 1980, Role of specific cytotoxic lymphocytes in cellular immunity against murine cytomegalovirus, Infect. Immun. 27:767.

    CAS  Google Scholar 

  • Howard, R. J., Miller, J., and Najarian, J. S., 1974, Cytomegalovirus induced immune suppression. II. Cell-mediated immunity, Clin. Exp. Immunol. 18:119.

    PubMed  CAS  Google Scholar 

  • Kasahara, T., Djeu, J. Y., Dougherty, S. F., and Oppenheim, J. J., 1983, Capacity of human large granular lymphocytes to produce multiple lymphokines: Interleukin-2, interferon and colony stimulating factor, J. Immunol. 131:2379.

    PubMed  CAS  Google Scholar 

  • Kirmani, N., Ginn, R. K., Mittal, K. K., Manischewitz, J. F., and Quinnan, G. V., 1981, Cytomegalovirus-specific cytotoxicity mediated by non-T lymphocytes from peripheral blood of normal volunteers, Infect. Immun. 34:441.

    PubMed  CAS  Google Scholar 

  • Kohl, S., Starr, S. E., Oleske, J. M., Shore, S. L., Ashman, R. B., and Nahmias, A. J., 1977, Human monocyte-macrophage-mediated antibody-dependent cytotoxicity to herpes simplex virus infected cells, J. Immunol. 118:729.

    PubMed  CAS  Google Scholar 

  • Lanza, E., Pastore, S., Hapel, A. J., and Djeu, J. Y., 1983, Growth of natural cytotoxic (NC) effector cells in interleukin-3, Nature 306:788.

    Article  PubMed  Google Scholar 

  • Larsson, E. L., Iscove, N. N., and Coutinho, A., 1980, Two distinct factors are required for the induction of T cell growth, Nature 283:664.

    Article  PubMed  CAS  Google Scholar 

  • Lattime, E. C., Pecoraco, G. A., and Stutman, O., 1981, Natural cytotoxic cells against solid tumors in mice. III. A comparison of effector cell antigenic phenotype and target cell recognition structures with those of NK cells, J. Immunol. 126:2011.

    PubMed  CAS  Google Scholar 

  • Lopez, C., Fitzgerald, P. A., and Siegal, F. P., 1983, Severe acquired immune deficiency syndrome in male homosexuals: Diminished capacity to make interferon-alpha in vitro associated with severe opportunistic infections, J. Infect. Dis. 148:962.

    Article  PubMed  CAS  Google Scholar 

  • Macher, A., Reichert, C., Straus, S., Longo, D., Parillo, J., Lane, C., Fauci, A. S., Rook, A. H., Manischewitz, J., and Quinnan, G. V., 1983, Death in the AIDS patient: Role of cytomegalovirus, N. Engl. J. Med. 309:1454.

    PubMed  CAS  Google Scholar 

  • McMichael, A., 1978, HLA-restriction of human cytotoxic T lymphocytes specific for in-fluenze virus: Poor recognition of virus associated with HLA-A2, J. Exp. Med. 148:1458.

    Article  PubMed  CAS  Google Scholar 

  • Nash, A. A., and Ashford, N. P. N., 1982, Split T-cell tolerance in herpes simplex virus-infected mice and its implication for anti-viral immunity, Immunology 45:761.

    PubMed  CAS  Google Scholar 

  • Nieminen, P., Paosivuo, R., and Saksela, E., 1982, Effect of a monoclonal anti-large granular lymphocyte antibody on the human NK activity, J. Immunol. 128:1097.

    PubMed  CAS  Google Scholar 

  • Okafor, G. O., Turner, M. W., and Hay, F. C., 1974, Localization of monocyte binding site of human immunoglobulin G, Nature 248:228.

    Article  PubMed  CAS  Google Scholar 

  • Oleski, J. M., Ashman, R. B., Kohl, S., Shore, S. S., Starr, S. E., Wood, P., and Nahmias, A. J., 1977, Human polymorphonuclear leukocytes as mediators of antibody dependent cellular cytotoxicity to herpes simplex virus-infected cells, Clin. Exp. Immunol. 27:446.

    Google Scholar 

  • Oppenheim, J. J., Stadler, B. M., Siraganian, R. P., Mage, M., and Mathieson, B., 1982, Lym-phokines: Their role in lymphocyte responses, Fed. Proc. 41:257.

    PubMed  CAS  Google Scholar 

  • Ortaldo, J. R., Bonnard, G. D., Kind, P. D., and Herberman, R. B., 1979, Cytotoxicity by cultured human lymphocytes: Characteristics of effector cells and specificity of cytotoxicity, J. Immunol. 122:1489.

    PubMed  CAS  Google Scholar 

  • Plotkin, S. A., Farquhar, J., and Hornberger, E., 1976, Clinical trials of immunization with the Towne 125 strain of human cytomegalovirus, J. Infect. Dis. 134:470.

    Article  PubMed  CAS  Google Scholar 

  • Quinnan, G. V., and Manischewitz, J. F., 1979, The role of natural killer cells and antibody-dependent cell-mediated cytotoxicity during murine cytomegalovirus infection, J. Exp. Med. 150:1549.

    Article  PubMed  CAS  Google Scholar 

  • Quinnan, G. V., and Rook, A. H., 1984, The importance of cytotoxic cellular immunity in the protection from cytomegalovirus infection, in: CMV: Pathogenesis and Prevention of Human Infections (S. A. Plotkin, ed.), p. 245, Liss, New York.

    Google Scholar 

  • Quinnan, G. V., Manischewitz, J. F., and Ennis, F. A., 1978, Cytotoxic T lymphocyte response to murine cytomegalovirus infection, Nature 273:514.

    Article  Google Scholar 

  • Quinnan, G. V., Kirmani, N., Esber, E., Sarai, R., Manischewitz, J. F., Rogers, J. L., Rook, A. H., Santos, G. W., and Burns, W. J., 1981, HLA-restricted cytotoxic lymphocyte responses to cytomegalovirus infection of bone marrow transplant recipients, J. Immunol. 126:2036.

    PubMed  Google Scholar 

  • Quinnan, G. V., Manischewitz, J. F., and Kirmani, N., 1982a, Involvement of natural killer cells in the pathogenesis of murine cytomegalovirus interstitial pneumonitis and the immune response to infection, J. Gen. Virol. 58:173.

    Article  PubMed  CAS  Google Scholar 

  • Quinnan, G. V., Kirmani, N., Rook, A. H., Manischewitz, J. F., Jackson, L., Moreschi, G., Santos, G. W., Sarai, R., and Bums, W. J., 1982b, HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients, N. Engl. J. Med. 307:7.

    Article  PubMed  Google Scholar 

  • Quinnan, G. V., Burns, W. H., Kirmani, N., Rook, A. H., Manischewitz, J., Jackson, L., Santos, G. W., and Sarai, R., 1984a, HLA-restricted cytotoxic T lymphocytes are an important defense mechanism in cytomegalovirus infections, Rev. Infect. Dis. 6:156.

    Article  PubMed  Google Scholar 

  • Quinnan, G. V., Delery, M., Rook, A. H., Frederick, W. R., Epstein, J. S., Manischewitz, J., Jackson, L., Ramsey, K., Mittal, K., Plotkin, S., and Hilleman, M., 1984b, Avirulence and immunogenicity of the Towne strain in comparison to a non-attenuated strain of cytomegalovirus, Ann. Intern. Med. (in press).

    Google Scholar 

  • Quinnan, G. V., Rook, A. H., Frederick, W. R., Manischewitz, J. F., Epstein, J. S., Siegel, J., Masur, H., Macher, A. M., and Deju, J. Y., 1984c, Prevalence, clinical manifestations, and immunology of herpesvirus infections in the acquired immunodeficiency syndrome, Ann. NY Acad. Sci. (in press).

    Google Scholar 

  • Rand, K. H., Pollard, R. B., and Merigan, T. C., 1978, Increased pulmonary superinfection in cardiac transplant patients undergoing primary cytomegalovirus infection, N. Engl. J. Med. 298:951.

    Article  PubMed  CAS  Google Scholar 

  • Reddehase, M., Suessmuth, W., Moyers, C., Falk, W., and Droege, W., 1982, Interleukin 2 is not sufficient as helper component for the activation of cytotoxic T lymphocytes by synergizes with a late helper effect that is provided by irradiated I-region-incompatible stimulator cells, J. Immunol. 128:61.

    PubMed  CAS  Google Scholar 

  • Reinherz, E. L., Kung, P. C., Goldstein, G., and Schlossman, S. F., 1979, Separation of functional subsets of human T cells by a monoclonal antibody, Proc. Natl. Acad. Sci. USA 76:4061.

    Article  PubMed  CAS  Google Scholar 

  • Rinaldo, C. R., Corney, W. P., Richter, B. S., Black, P. H., and Husch, M. S., 1980, Mechanisms of immunosuppression in cytomegaloviral mononucleosis, J. Infect. Dis. 141:488.

    Article  PubMed  Google Scholar 

  • Rook, A. H., and Quinnan, G. V., 1983, Cell mediated immunity to human cytomegalovirus, in: Human Immunity to Viruses (F. E. Ennis, ed.), pp. 241–246, Academic Press, New York.

    Google Scholar 

  • Rook, A. H., Masur, H., Lane, H. C., Frederick, W., Kasahara, T., Macher, A. M., Djeu, J. Y., Manischewitz, J. F., Jackson, L., Fauci, A. S., and Quinnan, G. V., 1983, Interleukin-2 enhances the depressed natural killer and cytomegalovirus-specific cytotoxic activities of lymphocytes from patients with the acquired immune deficiency syndrome, J. Clin. Invest. 72:398.

    Article  PubMed  CAS  Google Scholar 

  • Rook, A. H., Quinnan, G. V., Frederick, W. F., Manischewitz, J. F., Jackson, L., Kirmani, N., Dantzler, T., Lee, B. B., and Courier, C. B., 1984, Importance of cytotoxic lymphocytes during cytomegalovirus infection of renal transplant recipients, Am. J. Med. 76:385.

    Article  PubMed  CAS  Google Scholar 

  • Rouse, B. T., Grewal, A. S., Babiuk, L. A., and Fujimiya, Y., 1977, Enhancement of antibody-dependent cell-mediated cytotoxicity of herpes virus-infected cells by complement, Infect. Immun. 18:660.

    PubMed  CAS  Google Scholar 

  • Shore, S. L., Cromeans, T. L., and Romano, T. J., 1976, Immune destruction of virus infected cells early in the infectious cycle, Nature 262:695.

    Article  PubMed  CAS  Google Scholar 

  • Siegal, F. P., Lopez, C., Hammer, G. S., Brown, A. E., Kornfeld, S. J., Gold, J., Hassett, J., Hirschman, S. Z., Cunningham-Rundles, C., Adelsberg, B. R., Parham, D. M., Siegal, M., Cunningham-Rundles, S., and Armstrong, D., 1981, Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions, N. Engl. J. Med 305:1439.

    Article  PubMed  CAS  Google Scholar 

  • Starr, W. E., and Allison, A. C., 1977, Role of T lymphocytes in recovery from murine cytomegalovirus infection, Infect. Immun. 17:458.

    PubMed  CAS  Google Scholar 

  • Timonen, T., and Saksela, E., 1980, Isolation of human natural killer cells by density gradient centrifugation, J. Immunol. Methods 36:285.

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri, G., Santoli, D., Dee, R. R., and Knowles, B. B., 1978, Antiviral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells: Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation, J. Exp. Med. 147:1299.

    Article  PubMed  CAS  Google Scholar 

  • Varho, M., Lehman-Grube, F., and Simon, M. M., 1981, Effector T lymphocytes in lymphocytic chorimeningitis virus-infected mice. J. Exp. Med. 153:992.

    Article  PubMed  CAS  Google Scholar 

  • West, W. H., Cannon, G. B., Kaz, H. D., Bonnard, G. D., and Herberman, R. B., 1977, Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line: Characterization of effector cells, J. Immunol. 118:355.

    PubMed  CAS  Google Scholar 

  • Yeager, A. S., Grumet, F. C., Hafleigh, E. B., Arvin, A. M., Bradley, J. S., and Prober, C. G., 1981, Prevention of transfusion-acquired cytomegalovirus infections in newborn infants, J. Pediatr. 98:281.

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel, R. M., and Welsh, R. M., 1976, H-2 compatibility requirement for virus-specific T-cell-mediated effector functions in vivo, J. Immunol. 117:1495.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Quinnan, G.V. (1985). Cell-Mediated Immunity in Cytomegalovirus Infections. In: Roizman, B., Lopez, C. (eds) The Herpesviruses. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8021-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8021-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8023-2

  • Online ISBN: 978-1-4615-8021-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics