Skip to main content

Synchrotron Radiation Sources, Research Facilities, and Instrumentation

  • Chapter
Book cover Synchrotron Radiation Research

Abstract

In this chapter we discuss the hardware associated with synchrotron radiation research. Of course, the major piece of equipment is the source itself—the synchrotron or storage ring. We discuss the characteristics of these two types of source and list those in operation and in construction throughout the world. The research facilities attached to the source are also discussed, particularly the beam channels and associated equipment to conduct the radiation from the ring to the experimental station. Lastly, we discuss the specialized instrumentation of synchrotron radiation research; particularly the equipment that has been developed to collect, monochromatize, and focus the radiation onto an experimental sample and then to detect the transmitted, diffracted, or re-emitted photons or secondary electrons produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Thompson, An x-ray synchrotron radiation source for Europe, Proceedings of the 1979 Particle Accelerator Conference-San Francisco, in IEEE Trans. Nucl. Sci. 26, 3809–3811 (1979); European Science Foundation; Reports on a European Synchrotron Radiation Facility, May 1979: Y. Farges, The feasibility study; Y. Farges and P. J. Duke (eds.), The scientific case; D. J. Thompson and M. W. Poole (eds.), The machine; B. Buras and G. V. Marr (eds.), instrumentation.

    Google Scholar 

  2. M. Sands, Proc. Int. Sch. Phys. “Enrico Fermi” 46, 257–411 (1970). Also, SLAC Report 121 (Nov. 1970).

    Google Scholar 

  3. S. Krinsky, L. Blumberg, J. Bittner, J. Galayda, R. Heese, and A. van Steenbergen, Design status of the 2.5-GeV National Synchrotron Radiation Light Source x-ray ring, Proceedings of the 1979 Particle Accelerator Conference-San Francisco, in IEEE Trans. Nucl. Sci. 26, 3806–3808 (1979).

    Google Scholar 

  4. L. Blumberg, J. Bittner, J. Galayda, R. Heese, S. Krinsky, J. Schuchman, and A. van Steenbergen, National Synchrotron Light Source VUV storage ring lattice, Proceedings of the 1979 Particle Accelerator Conference-San Francisco, in IEEE Trans. Nucl. Sci. 26, 3842 - 3845 (1979).

    Article  Google Scholar 

  5. D. J. Thompson, The sxs: Progress report on the dedicated synchrotron radiation source at Dares-bury and operation of a 600-MeV booster, Proceedings of the 1979 Particle Accelerator Conference-San Francisco, in IEEE Trans. Nucl. Sci. 26, 3803–3805 (1979).

    Google Scholar 

  6. S. Kamada, Y. Kamiya, and M. Kihara, Lattice of photon factory storage ring, Proceedings of the 1979 Particle Accelerator Conference-San Francisco, in IEEE Trans. Nucl. Sci. 26, 3848–3850 (1979).

    Google Scholar 

  7. A. van Steenbergen, Synchrotron radiation sources, Proceedings of the 1979 Particle Accelerator Conference-San Francisco, in IEEE Trans. Nucl. Sci. 26, 3785–3790 (1979).

    Google Scholar 

  8. D. Einfeld, W. D. Klotz, G. Mülhaupt, Th. Mueller, and R. Richter, BESSY, an 800-MeV electron storage ring dedicated to VUV-synchrotron radiation, Proceedings of the 1979 Particle Accelerator Conference-San Francisco, in IEEE Trans. Nucl. Sci. 26, 3801–3802 (1979).

    Google Scholar 

  9. J. P. Blewett (ed.), Proposal for a National Synchrotron Radiation Light Source. BNL Report 50595 (2 volumes) (1977); Proposal for a 1.5-GeV Electron Storage Ring as a Dedicated Synchrotron Source, FOM Institute Report 39760, Univ. of Tech. Report NK-235 (Oct. 1976).

    Google Scholar 

  10. E. M. Rowe, The synchrotron radiation source, in Topics in Current Physics-Synchrotron Radiation, C. Kunz (ed.), Springer-Verlag, Heidelberg (1979).

    Google Scholar 

  11. E. L. Garwin, 3-GeV Colliding-Beam Vacuum System, Memorandum, SLAC (1963).

    Google Scholar 

  12. M. Bernardini and L. Malter, J. Vac. Sci. Technol. 2, 130 (1965).

    Article  Google Scholar 

  13. G. E. Fischer and R. A. Mack, J. Vac. Sci. Technol. 2, 123 (1965).

    Article  Google Scholar 

  14. J. Cerino and R. Cronin, Beryllium windows for synchrotron radiation beam lines, Proceedings of the 1979 Particle Accelerator Conference-San Francisco, in IEEE Trans. Nucl. Sci. 26, 3816–3818 (1979).

    Google Scholar 

  15. R. Z. Bachrach, A. Bianconi, and F. Brown, Nucl. Instrum. Methods 152, 53 - 56 (1978).

    Article  CAS  Google Scholar 

  16. R. J. Averill, W. F. Colby, T. S. Dickenson, A. Hofmann, R. Little, B. J. Maddox, H. Mieras, J. M. Paterson, K. Strauch, G. A. Voss, and H. Winick, IEEE Trans. Nucl. Sci. 20, 813 - 15 (1973).

    Article  CAS  Google Scholar 

  17. E. E. Koch, C. Kunz, and E. W. Weiner, Optik (Stuttgart) 45, 394 - 410 (1976).

    Google Scholar 

  18. E. E. Koch and C. Kunz, Synchrotronstrahlung bei DESY; Ein Handbuch flit. Benutzer, 420pp., (1977).

    Google Scholar 

  19. H. J. Behrend, E. E. Koch, C. Kunz, and G. Mülhaupt, Nucl. Instrum. Methods 152, 37 - 41 (1978).

    Article  CAS  Google Scholar 

  20. P. Dagneaux, C. Depautex, P. Dhez, J. Durop, Y. Farge, R. Fourme, P. M. Goyon, P. Jaegle, S. Leach, R. Lopez-Delgado, G. Morel, R. Pinchaux, P. Thiry, C. Vermeil, and F. Wuilleumier, Ann. Phys. (N.Y.) 9, 9 - 65 (1975).

    Google Scholar 

  21. K. O. Hodgson, G. Chu, and H. Winick (eds.), SSRP Report 100(1976).

    Google Scholar 

  22. H. Winick, Proceedings of the 9th International Conference on High Energy Accelerators, pp. 685–688, Stanford, California (1974).

    Google Scholar 

  23. A. D. Baer, R. Gaxiola, A. Golde, F. Johnson, B. Salsburg, H. Winick, M. Baldwin, N. Dean, J. Harris, E. Hoyt, B. Humphrey, J. Jurow, R. Melen, J. Miljan, and G. Warren, IEEE Trans. Nucl. Sci. 22, 1794 - 97 (1975).

    Article  Google Scholar 

  24. H. Winick, SSRL: Past experience, present development, future plans, Proceedings of the 1979 Particle Accelerator Conference—San Francisco, IEEE Trans. Nucl. Sci. 26, 3798 - 3800 (1979).

    Article  Google Scholar 

  25. J. Cerino, A. Golde, J. Hastings, I. Lindau, B. Salsburg, H. Winick, M. Lee, P. Morton, and A. Garren, IEEE Trans. Nucl. Sci. 24, 1003 - 5 (1977).

    Article  Google Scholar 

  26. R. Melen, B. Salsburg, and J. Yang, Vacuum control system for synchrotron radiation beam lines, Proceedings of the 1979 Particle Accelerator Conference—San Francisco, IEEE Trans. Nucl. Sci. 26, 3819 - 3820 (1979).

    Article  Google Scholar 

  27. C. Jako, N. Hower, and T. Simons, Installation and thermal design of synchrotron radiation beam ports at SPEAR, Proceedings of the 1979 Particle Accelerator Conference—San Francisco, IEEE Trans. Nucl. Sci. 26, 3851 - 3853 (1979).

    Article  Google Scholar 

  28. D. Mills, D. Bilderback, and B. W. Batterman, Analysis and design of synchrotron radiation exit ports at CESR, Proceedings of the 1979 Particle Accelerator Conference—San Francisco, IEEE Trans. Nucl. Sci. 26, 3854 - 3856 (1979).

    Article  Google Scholar 

  29. G. Rakowsky and L. R. Hughey, SURF’S up at tacs: A progress report, IEEE Trans. Nucl. Sci. 26, 3845 - 3847 (1979).

    Article  Google Scholar 

  30. H. Winick, Considerations for the design of synchrotron radiation research facilities, pp. 43–62 of the Proceedings of the Course on Synchrotron Radiation Research, Alghero, Italy, Sept. 1976; A. N. Mancini and I. F. Quercia, (eds.), Int. Colloq. Appl. Phys. INFN.

    Google Scholar 

  31. M. Baldwin and J. Pope, SLAC TN-73–13, Stanford Linear Accelerator Center (Oct. 1973).

    Google Scholar 

  32. R. Jean and J. Rauss, Vide 111 123–127 (1964). Also available in English translation as SLAC Translation No. 159. H. Betz, P. Hofbauer, and A. Heuberger, J. Vac. Sci. Tech. (to be published).

    Google Scholar 

  33. P. N. Clout and P. A. Ridley, Nucl. Instrum. Methods 152, 145 - 49 (1978).

    Article  Google Scholar 

  34. H. Winick and G. Brown (eds.), Workshop on X-ray Instrumentation for Synchrotron Radiation Research, April 3–5, 1978, SSRL Report 78/04 (1978).

    Google Scholar 

  35. R. Allemand and G. Thomas, Nucl. Instrum. Methods 137, 141 (1976).

    Article  Google Scholar 

  36. W. Gudat and C. Kunz, Instrumentation for spectroscopy and other applications, in Topics in Current Physics—Synchrotron Radiation, C. Kunz (ed.), Springer-Verlag, Heidelberg (1979).

    Google Scholar 

  37. A. Franks, X-ray optics, Sci. Prog. (London) 64, 371 - 422 (1977).

    Google Scholar 

  38. Y. Sakayanagi and S. Aoki, Soft x-ray imaging with toroidal mirrors, Appl. Opt. 17, 601 - 603 (1978).

    Article  PubMed  CAS  Google Scholar 

  39. V. Rehn, J. L. Stanford, A. D. Baer, V. O. Jones, and W. J. Choyke, VUV scattering by polished surfaces of CVD SiC, Appl. Opt. 16, 1111 (1978)

    Article  Google Scholar 

  40. V. Rehn and V. O. Jones, Opt. Eng. 17, 504 - 11 (1978)

    CAS  Google Scholar 

  41. V. Rehn and V. O. Jones, Also, Opt. Eng. 17 504 (1978). [Also available as SSRL Report 77/13].

    Google Scholar 

  42. J. A. Howell and P. Horowitz, Nucl. Instrum. Methods 125, 225 - 230 (1975).

    Article  Google Scholar 

  43. T. Barbee, a talk given on layered synthetic microstructures at the Lithography/Microscopy Beam Line Design Workshop held at SSRL on February 21, 1979. See pp. 185–194 of SSRL Report 79/02 (1979).

    Google Scholar 

  44. F. C. Brown, R. Z. Bachrach, and N. Lien, Nucl. Instrum. Methods 152, 73 - 80 (1978).

    Article  CAS  Google Scholar 

  45. C. Depautex, P. Thiry, R. Pinchaux, Y. Petroff, D. Lepére, G. Passereau, and J. Flamand, Nucl. Instrum. Methods 152, 101 - 2 (1978).

    Article  CAS  Google Scholar 

  46. E. Källne, H. W. Schnopper, J. P. Delvaille, L. P. Van Speybroeck, and R. Z. Bachrach, Nucl. Instrum. Methods 152, 101 - 107 (1978).

    Article  Google Scholar 

  47. W. Eberhardt, G. Kalkoffen, and C. Kunz, Nucl. Instrum. Methods 152, 81 - 83 (1978).

    Article  CAS  Google Scholar 

  48. J. H. Beaumont and M. Hart, J. Phys. E 7, 823 - 9 (1974).

    Article  CAS  Google Scholar 

  49. K. Kohra, M. Ando, T. Matsushita, and H. Hashizume, Nucl. Instrum. Methods 152, 161 - 166 (1978).

    Article  CAS  Google Scholar 

  50. M. Lemonnier, O. Collet, C. Depautex, J. Esteva, and D. Raoux, Nucl. Instrum. Methods 152, 109 - 111 (1978).

    Article  CAS  Google Scholar 

  51. J. Stöhr, V. Rehn, I. Lindau, and R. Z. Bachrach, Nucl. Instrum. Methods 152, 43 - 51 (1978).

    Article  Google Scholar 

  52. J. B. Hastings, B. M. Kincaid, and P. Eisenberger, Nucl. Instrum. Methods 152, 167–172 (1978).

    Article  CAS  Google Scholar 

  53. A. R. Faruqi, in The Rotation Method in Crystallography, U. W. Arndt and A. J. Wonacott (eds.), Chapter 16, pp. 227–243, North-Holland, Amsterdam (1977).

    Google Scholar 

  54. C. Cork, D. Fehr, R. Hamlin, W. Vernon, Ng. H. Xuong, and V. Perez-Mendez, J. Appl. Crystallogr. 7, 319 - 23 (1974).

    Article  Google Scholar 

  55. Ng. H. Xuong, S. Freer, R. Hamlin, C. Nielson, and W. Vernon, Acta Crystallogr. Sect. A 34, 284–9 (1978).

    Google Scholar 

  56. G. Charpak, F. Sauli, and R. Kahn, Nucl. Instrum Methods 152, 185 - 90 (1978).

    Article  CAS  Google Scholar 

  57. R. Allemand and G. Thomas, Nucl. Instrum. Methods 137, 141 (1976).

    Article  Google Scholar 

  58. A. W. Woodhead and G. Eschard; Acta Electron. 14, 181 (1971).

    Google Scholar 

  59. U. W. Arndt, in The Rotation Method in Crystallography, U. W. Arndt and A. J. Wonacott (eds.), Chapter 17, pp. 245–261, North-Holland, Amsterdam (1977).

    Google Scholar 

  60. D. E. Eastman, F. J. Himpsel, and J. J. Donelon, Bull. Am. Phys. Soc. 23, 363 (1978).

    Google Scholar 

  61. F. J. Himpsel and D. E. Eastman; Phys. Rev. B 18, 5236–9 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Winick, H. (1980). Synchrotron Radiation Sources, Research Facilities, and Instrumentation. In: Winick, H., Doniach, S. (eds) Synchrotron Radiation Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7998-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7998-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8000-3

  • Online ISBN: 978-1-4615-7998-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics