Skip to main content

Methods of Producing Ultrahigh Vacuums and Measuring Ultralow Pressures

  • Chapter
Surface and Colloid Science
  • 654 Accesses

Abstract

Ultrahigh vacuum (UHV) or ultralow pressure is here defined as a pressure range below 10−9 Torr (1 Torr = 1 mm Hg = 133 Pa = 133 N m−2). The decade of the sixties saw ultrahigh vacuum technology develop from a field of active research whose outlines were only dimly visible to one whose major components became commercially available with an accompanying decline in fundamental research activity. Today, all the components necessary for producing and measuring UHV may be purchased. Systems in which UHV has been produced range from space simulation chambers the size of a small house,(1) through 2 km of 6-in. tubing in the CERN intersecting storage ring accelerator,(2) to small laboratory systems with a volume of a few liters.(3,4) The volume of the universe at UHV far exceeds the volume at higher pressures. Indeed, it has been suggested that the universe itself originated as a spontaneous event in vacuum(5)! The development of UHV has stimulated a rapid growth, both experimental and theoretical, in the fundamental study of solid surfaces.(6) The great bulk of the vacuum market still rests above the UHV range, but it may be expected that UHV will play an expanding role in the fabrication of surface-sensitive devices, where extreme purity is important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. V. Omelka, J. Vac. Sci. Technol. 7, 257 (1970).

    Article  Google Scholar 

  2. E. Fischer, J. Vac. Sci. Technol. 9, 1203 (1972).

    Article  CAS  Google Scholar 

  3. P. A. Redhead, E. V. Kornelsen, and J. P. Hobson, Can. J. Phys. 40, 1814 (1962).

    Article  Google Scholar 

  4. G. A. Rozgonyi, W. J. Polito, and B. Schwartz, Vacuum 16, 121 (1966).

    Article  CAS  Google Scholar 

  5. E. P. Tryon, Nature 246, 396 (1973).

    Article  Google Scholar 

  6. Proceedings of the 1st International Conference on Solid Surfaces, J. Vac. Sci. Tech. 9, 561–952 (1972).

    Article  Google Scholar 

  7. The reader may find an account in the Proceedings of the 6th International Vacuum Congress and the 2nd International Conference on Solid Surfaces, held in Kyoto, Japan, March 25–29, 1974. Published in Jap. J. Appl. Phys., Supplement 2, Parts 1 and 2 (1974).

    Google Scholar 

  8. P. A. Redhead, J. P. Hobson, and E. V. Kornelsen, The Physical Basis of Ultrahigh Vacuum, Chapman and Hall, London (1968).

    Google Scholar 

  9. R. Clader and G. Lewin, Brit. J. Appl. Phys. 18, 1459 (1967).

    Article  Google Scholar 

  10. L. De Chernatony, Vacuum 22, 635 (1972).

    Article  Google Scholar 

  11. G. Moraw and R. Dobrozemsky, Proceedings of the 6th International Vacuum Congress, Kyoto, Japan. Published in Jap. J. Appl. Phys., Supplement 2, Part 1, 261 (1974).

    Google Scholar 

  12. J. R. Young, J. Vac. Sci. Tech. 6, 398 (1969).

    Article  Google Scholar 

  13. W. A. Rogers, R. S. Buritz, and D. Alpert, J. Appl. Phys. 25, 868, 1954.

    Article  CAS  Google Scholar 

  14. F. J. Norton, J. Appl. Phys. 28, 34 (1957).

    Article  Google Scholar 

  15. W. G. Perkins, J. Vac. Sci. Technol. 10, 543 (1973).

    Article  Google Scholar 

  16. A. Klopfer, Vakuum Tech. 10, 113 (1961).

    CAS  Google Scholar 

  17. G. A. Rozgonyi and J. Sosniak, Vacuum 18, 1 (1968).

    Google Scholar 

  18. J. P. Hobson and J. W. Earnshaw, J. Vac. Sci. Technol. 4, 257 (1967).

    Article  CAS  Google Scholar 

  19. G. Carter, D. G. Armour, and L. De Chernatony, Vacuum 22, 643 (1972).

    Article  CAS  Google Scholar 

  20. T. Tom, Phys. Today 20, 32 (1972).

    Article  Google Scholar 

  21. B. D. Power, High Vacuum Pumping Equipment, Reinhold, New York (1966).

    Google Scholar 

  22. J. Singleton, J. Phys. E. 6, 685 (1973).

    Article  CAS  Google Scholar 

  23. M. H. Hablanian and J. C. Maliakal, J. Vac. Sci. Technol. 10, 58 (1973).

    Article  CAS  Google Scholar 

  24. D. J. Santeler, J. Vac. Sci. Technol. 8, 299 (1971).

    Article  Google Scholar 

  25. A. Venema, Vacuum 9, 54 (1959).

    Article  Google Scholar 

  26. D. G. Bills, J. Vac. Sci. Technol. 10, 65 (1973).

    Article  Google Scholar 

  27. S. L. Rutherford, Trans. Amer. Vac. Soc. Vac. Symp. 10, 185 (1963).

    Google Scholar 

  28. L. D. Hall, J. Vac. Sci. Technol. 6, 44 (1969).

    Article  Google Scholar 

  29. J. H. Singleton, J. Vac. Sci. Technol. 6, 316 (1969).

    Article  Google Scholar 

  30. M. V. Kuznetsov. A. S. Nasarov, and G. F. Ivanovsky, J. Vac. Sci. Technol. 6, 34 (1969).

    Article  Google Scholar 

  31. M. D. Maley and E. M. Trachtenberg, Vacuum 23, 403 (1973).

    Article  Google Scholar 

  32. J. Vaumoron, G. Gasparini, and G. Bertoli, J. Vac. Sci. Technol 9, 932 (1972).

    Google Scholar 

  33. D. J. Harra and T. W. Snouse, J. Vac. Sci. Technol. 9, 552 (1972).

    Article  CAS  Google Scholar 

  34. L. Y. L. Shen, Rev. Sci. Instr. 43, 1301 (1972).

    Article  Google Scholar 

  35. G. E. Osterstrom and A. H. Shapiro, J. Vac. Sci. Technol. 9, 405 (1972).

    Article  CAS  Google Scholar 

  36. K. H. Mirgel, J. Vac. Sci. Technol. 9, 408 (1972).

    Article  Google Scholar 

  37. J. P. Hobson, J. Vac. Sci. Technol. 10, 73 (1973).

    Article  CAS  Google Scholar 

  38. C. Benvenuti, J. Vac. Sci. Technol. 11, 591 (1974).

    Article  CAS  Google Scholar 

  39. V. B. Yuferov, P. M. Kobzev, and B. V. Glasov. Soy. Phys. Tech. Phys. 15, 457 (1970).

    Google Scholar 

  40. K. E. Templemeyer, R. Dawdarn, and R. L. Young, J. Vac. Sci. Technol. 8, 575 (1970).

    Article  Google Scholar 

  41. J. M. Lafferty, J. Vac. Sci. Technol. 9, 101 (1972).

    Article  Google Scholar 

  42. W. J. Lange, Phys. Today 20, 40 (1972).

    Google Scholar 

  43. R. T. Bayard and D. Alpert, Rev. Sci. Instr. 21, 571 (1950).

    Article  CAS  Google Scholar 

  44. R. K. Fitch, T. Mulvey, W. J. Thatcher, and A. H. Mcllraith, J. Phys. E. Sci. Instr. 4, 553 (1971).

    Article  Google Scholar 

  45. E. A. Meyer and R. G. Herb, J. Vac. Sci. Technol. 4, 63 (1967).

    Article  CAS  Google Scholar 

  46. J. M. Lafferty, Trans. Amer. Vac. Soc. Vac. Symp. 7, 97 (1960).

    Google Scholar 

  47. J. P. Hobson and P. A. Redhead, J. Vac. Sci. Technol. 2, 93 (1965).

    Article  CAS  Google Scholar 

  48. D. Alpert, J. Appl. Phys. 24, 860 (1953).

    Article  CAS  Google Scholar 

  49. A. Van Oostrom, Trans. Amer. Vac. Soc. Vac. Sump. 8, 443 (1961).

    Google Scholar 

  50. P. A. Redhead, Rev. Sci. Instr. 31, 343 (1960).

    Google Scholar 

  51. J. P. Hobson, J. Vac. Sci. Technol. 1, 1 (1964).

    Google Scholar 

  52. W. C. Schuemann, Rev. Sci. Instr. 34, 700 (1963).

    Google Scholar 

  53. P. A. Redhead and J. P. Hobson, Brit. J. Appl. Phys. 16, 1555 (1965).

    Google Scholar 

  54. W. G. Mourad, T. Pauly, and R. G. Herb, Rev. Sci. Instr. 35, 661 (1964).

    Article  CAS  Google Scholar 

  55. A. Klopfer, Trans. Amer. Vac. Soc. Vac. Symp. 8, 439 (1961).

    Google Scholar 

  56. W. D. Davis, Trans. Amer. Vac. Soc. Vac. Symp. 9, 438 (1962).

    Google Scholar 

  57. J. M. Lafferty, Trans. Amer. Vac. Soc. Vac. Symp. 9, 438 (1962).

    Google Scholar 

  58. P. A. Redhead, J. Vac. Sci. Technol. 3, 173 (1966).

    Article  CAS  Google Scholar 

  59. J. C. Helmer and W. H. Hayward, Rev. Sci. Instr. 37, 1652 (1966).

    Article  CAS  Google Scholar 

  60. D. Blechschmidt, J. Vac. Sci. Technol. 10, 376 (1973).

    Article  CAS  Google Scholar 

  61. P. J. Szwemin, J. Vac. Sci. Technol. 9, 122 (1972).

    Article  Google Scholar 

  62. U. Beeck and G. Reich, J. Vac. Sci. Technol. 9, 126 (1972).

    Article  Google Scholar 

  63. B. Angerth, Vacuum 22, 7 (1973).

    Article  Google Scholar 

  64. J. P. Hobson and P. A. Redhead, Can. J. Phys. 36, 271 (1958).

    Article  Google Scholar 

  65. P. A. Redhead, Can. J. Phys. 37, 1260 (1959).

    Article  CAS  Google Scholar 

  66. J. R. Young and F. P. Hession, Trans. Amer. Vac. Soc. Vac. Symp. 10, 234 (1963).

    CAS  Google Scholar 

  67. R. D. Woods, J. Vac. Sci. Technol. 10, 433 (1973).

    Article  Google Scholar 

  68. P. J. Bryant, W. W. Longley, and C. M. Gosselin, J. Vac. Sci. Technol. 3, 62 (1966).

    Article  Google Scholar 

  69. F. Feakes, F. L. Torney, and F. J. Brock, NASA Report CR 167, STAR Index N65–17126 (1965).

    Google Scholar 

  70. K. F. Poulter, J. Phys. E 5, 267 (1972).

    Article  Google Scholar 

  71. F. S. Johnson, J. M. Carroll, and D. E. Evans, J. Vac. Sci. Technol. 9, 450 (1972).

    Article  Google Scholar 

  72. W. K. Huber, Vacuum 13, 399 (1963).

    Article  Google Scholar 

  73. W. K. Huber, Vacuum 13, 469 (1963).

    Article  Google Scholar 

  74. E. W. Blauth, Proc. 4th Intern. Vac. Congress, p. 21, Institute of Physics and Physical Society, London (1968).

    Google Scholar 

  75. W. D. Davis and T. A. Vanderslice, Trans. Amer. Vac. Soc. Vac. Symp. 7, 417 (1960).

    Google Scholar 

  76. W. J. Lange, J. Vac. Sci. 2 74 (1965).

    Google Scholar 

  77. A. Klopfer, Vakuum Tech. 10, 113 (1961).

    CAS  Google Scholar 

  78. P. H. Dawson and N. R. Whetten, Adv. Electronics Electron Phys. 27, 59 (1969).

    Article  CAS  Google Scholar 

  79. D. C. Damoth, Le Vide 28, 27 (1973).

    Google Scholar 

  80. A. van Oostrom, Vacuum 22, 15 (1972).

    Article  Google Scholar 

  81. R. Souchet, J. Sarrach, and G. Valdener, Le Vide 27, 125 (1972).

    CAS  Google Scholar 

  82. Stanley Rutherberg, J. Vac. Sci. Technol. 9, 186 (1972).

    Article  Google Scholar 

  83. J. R. Miller III, J. Vac. Sci. Technol. 9, 201 (1972).

    Article  Google Scholar 

  84. R. A. Outlaw and R. E. Stell, J. Vac. Sci. Technol. 8, 608 (1971).

    Article  CAS  Google Scholar 

  85. C. G. Titcomb and W. F. Wallace, J. Vac. Sci. Technol. 9, 1253 (1972).

    Article  CAS  Google Scholar 

  86. D. Alpert and R. S. Buritz, J. Appl. Phys. 25, 202 (1954).

    Article  CAS  Google Scholar 

  87. J. R. Roehrig and J. C. Simons, Jr. Trans. Vac. Symp. 8, 511 (1961).

    Google Scholar 

  88. W. D. Davis, J. Vac. Sci. Technol. 5, 23 (1968).

    Article  Google Scholar 

  89. W. W. Hultzmann and L. N. Krause, J. Vac. Sci. Technol. 11, 889 (1974).

    Article  Google Scholar 

  90. Exhibitions of commercial items are held annually in conjunction with the Annual Symposium of the American Vacuum Society and every three years in conjunction with the International Vacuum Congress, as well as at more restricted symposia.

    Google Scholar 

  91. W. R. Wheeler, Phys. Today, 52 (Aug. 1972).

    Google Scholar 

  92. W. F. Brunner and T. H. Batzer, Practical Vacuum Techniques, Reinhold Publishing Corp., New York (1965).

    Google Scholar 

  93. J. L. Whitton, Proc. Roy. Soc. A311, 63 (1969).

    Article  Google Scholar 

  94. J. P. Hobson, Jap. J. Appl. Physics, Supplement 2, Part 1, 317 (1974).

    Google Scholar 

  95. J. A. Dillon, Trans. Amer. Vac. Soc. Vac. Symp. 8, 113 (1961).

    Google Scholar 

  96. R. W. Roberts, Brit. J. Appl. Phys. 14, 537 (1963).

    Article  Google Scholar 

  97. R. W. Roberts, Report No. 67-C-087, General Electric Research and Development Center, Schenectady, New York (March 1967).

    Google Scholar 

  98. F. J. Brock. Surface Cleaning Techniques in UHV, Rep. NASA-CR-66273, National Research Corp., Cambridge, Massachusetts (1966).

    Google Scholar 

  99. S. M. Bedair and H. P. Smith, J. Appl. Phys. 40, 4776 (1969).

    Article  CAS  Google Scholar 

  100. A. M. Horgan and I. Dalins, J. Vac. Sci. Technol. 10, 523 (1973).

    Article  CAS  Google Scholar 

  101. R. R. Sowell, R. E. Cuthrell, D. M. Mattox, and R. D. Bland, J. Vac. Sci. Technol. 11, 474 (1974).

    Article  CAS  Google Scholar 

  102. T. E. Madey and J. T. Yates, J. Vac. Sci. Technol. 8, 525 (1971).

    Article  CAS  Google Scholar 

  103. J. H. Leck and B. P. Stimpson, J. Vac. Sci. Technol. 9, 293 (1972).

    Article  CAS  Google Scholar 

  104. H. H. Madden and G. Ertl, Surface Sci. 35, 211 (1973).

    Article  CAS  Google Scholar 

  105. P. W. Palmberg and T. N. Rhodin, J. Phys. Chem. Solids 29, 1917 (1968).

    Article  CAS  Google Scholar 

  106. E. W. Müller, Science 149, 591 (1965).

    Article  Google Scholar 

  107. J. N. Smith, Jr., and H. Saltsburg, J. Chem. Phys. 40, 3585 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Hobson, J.P. (1979). Methods of Producing Ultrahigh Vacuums and Measuring Ultralow Pressures. In: Good, R.J., Stromberg, R.R. (eds) Surface and Colloid Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7969-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7969-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7971-7

  • Online ISBN: 978-1-4615-7969-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics