Skip to main content

The Use of the Time Correlation Function in Floquet Theory

  • Chapter
Super-Intense Laser-Atom Physics

Part of the book series: NATO ASI Series ((NSSB,volume 316))

Abstract

In the description of the interaction of short and strong laser pulses with atoms or molecules the Floquet picture [1] provides in general the best basis for an analysis even down to pulse lengths of the order of 10 or 20 laser cycles. This is so because the Floquet states are the equivalents of the stationary states for the case of a constant laser amplitude and make it possible to separate the effects of the laser frequency from the effects of the time variation of the laser amplitude. The diagonalization of the Floquet Hamiltonian, however, is very difficult if the system contains a continuum and there is essentially only one method to do this, the complex dilatation method [2]. On the other hand, the direct, numerical solution of the time dependent Schrödinger equation is much easier and there are a number of efficient approaches, mostly based on real coordinates and energies [3,4]. Therefore the complex dilatation method can not be directly used to analyse a wavefunction calculated with such a real algorithm. It is the purpose of this contribution to describe an alternative method introduced into Roquet theory recently [5] to obtain informations about the Floquet content of a given wavefunction. This method is based on the calculation of the (local) time correlation function which can be calculated by solving the time dependent Schrödinger equation and which uses real energies and coordinates. It can therefore very easily incorporated into a given solution algorithm of the time dependent Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Shirley, Phys. Rev. 138, B979, (1965).

    Article  ADS  Google Scholar 

  2. S.I. Chu, Adv. At. Mol. Phys. 21, 197, (1985).

    Google Scholar 

  3. A. Maquet, S.I. Chu and W.P. Reinhardt, Phys. Rev. A27, 2946, (1983).

    ADS  Google Scholar 

  4. R.M. Potvliege and R. Shakeshaft, Phys. Rev. A40, 3061, (1989).

    ADS  Google Scholar 

  5. K.C. Kulander, Phys. Rev. A35, 445, (1987).

    ADS  Google Scholar 

  6. J. Javanainen, J.H. Eberly and Q. Su, Phys. Rev. A38, 3430, (1988).

    ADS  Google Scholar 

  7. X. Tang, H. Rudolph and P. Lambropoulos, Phys. Rev. Lett. 65, 3269, (1990):

    Article  ADS  Google Scholar 

  8. special issue of Comput. Phys. Comm. 63, K.C. Kulander eds., (1991).

    Google Scholar 

  9. special issue of J. Opt. Soc. Am. B7, K.C. Kulander and A. L’Huillier eds., (1991).

    Google Scholar 

  10. M. Pont, D. Proulx and R. Shakeshaft, Phys. Rev. A44, 4486, (1991).

    ADS  Google Scholar 

  11. U.L. Pen and T.F. Jiang, Phys. Rev. A46, 4297, (1992).

    ADS  Google Scholar 

  12. S. Chelkowski, T. Zuo and A.D. Bandrauk, Phys. Rev. A46, R5342, (1992).

    ADS  Google Scholar 

  13. M. Horbatsch, J. Phys. B24, 4919, (1991).

    ADS  Google Scholar 

  14. T. Millack, V. Véniard and J. Henkel, submitted to Physics Lett.

    Google Scholar 

  15. M.D. Feit, J.A. Fleck Jr. and A. Steiger, J. Comp. Phys. 47, 412, (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. M.R. Hermann and J.A. Fleck Jr., Phys. Rev. A38, 6000, (1988).

    ADS  Google Scholar 

  17. Q. Su and J.H. Eberly, Phys. Rev. A44, 5997, (1991).

    ADS  Google Scholar 

  18. V.C. Reed and K. Burnett, Phys. Rev. A43, 6217, (1991).

    ADS  Google Scholar 

  19. C. Brezinski and M. Redvio Zaglia, “Extrapolation Methods, Theory And Practice”, Elsevier Science, Amsterdam, (1991)

    MATH  Google Scholar 

  20. J.H. Eberly, Q. Su and J. Javanainen, Phys. Rev. Lett. 62, 881, (1989).

    Article  ADS  Google Scholar 

  21. K. Burnett, V.C. Reed, J. Cooper and P.L. Knight, Phys. Rev. A45, 3347, (1992).

    ADS  Google Scholar 

  22. J.L. Krause, K.J. Schafer and K.C. Kulander, Phys. Rev. A45, 4998, (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Plenum Press, New York

About this chapter

Cite this chapter

Millack, T. (1993). The Use of the Time Correlation Function in Floquet Theory. In: Piraux, B., L’Huillier, A., Rzążewski, K. (eds) Super-Intense Laser-Atom Physics. NATO ASI Series, vol 316. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7963-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7963-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7965-6

  • Online ISBN: 978-1-4615-7963-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics