Skip to main content

The H1 Class of Histone and Diversity in Chromosomal Structure

  • Chapter
Subcellular Biochemistry

Abstract

Models of chromatin structure that accurately predict the mechanisms of cell replication, differentiation, and neoplasia must accommodate two seemingly opposing concepts. The first is one of uniformity, which arises from the fact that the structures of DNA itself is conserved in all living creatures. The second is one of diversity, which arises from the fact that genes may be differentially expressed in different tissues. The obvious candidates for imparting both uniform and diverse structural forms to chromatin are chromosomal proteins, and it is not unreasonable to assume that all levels of structure of the chromosome are controlled by the interaction and reversible modification of various chromosomal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, E. D., and Woodland, H. R., 1974, Histone synthesis in early amphibian development: Histone and DNA synthesis are not coordinated, J. Mol. Biol. 88:263–285.

    PubMed  CAS  Google Scholar 

  • Adler, A. J., Langan, T. A., and Fasman, G. D., 1972, Complexes of deoxyribonucleic acid with lysine-rich (fl) histone phosphorylated at two separate sites: Circular dichroism studies, Arch. Biochem. Biophys. 153:169–117.

    Google Scholar 

  • Allfrey, V. G., Littau, V. C., and Mirsky, A. E., 1963, On the role of histones in regulating ribonucleic acid synthesis in the cell nucleus, Proc. Natl. Acad. Sci. U.S.A. 49:414–421.

    PubMed  CAS  Google Scholar 

  • Ajiro, K., Borun, T., and Cohen, L. H., 1975, Phosphorylation sites of histone I (Fl) in relation to the cell cycle, Fed. Proc. 34:581 abst.

    Google Scholar 

  • Backstrom, S., 1965, Basic proteins in the sea urchin embryo (Paracentrotus lividus) Acta Embryol. Morphol. Exp. 8:20–26.

    CAS  Google Scholar 

  • Balhorn, R., Bordwell, J., Sellers, L., Granner, D., and Chalkley, R., 1972a, Histone phosphorylation and DNA synthesis are linked in synchronous cultures of HTC cells, Biochem. Biophys. Res. Commun. 46:1326–1333.

    CAS  Google Scholar 

  • Balhorn, R., Chalkley, R., and Granner, D., 1972b, Lysine-rich histone phosphorylation. A positive correlation with cell replication, Biochem. 11:1094–1098.

    CAS  Google Scholar 

  • Balhorn, R., Oliver, D., Hohmann, P., Chalkley, R., and Granner, D., 1972c, Turnover of deoxyribonucleic acid, histones, and lysine-rich histone phosphate in hepatoma tissue culture cells, Biochemistry 11:3915–3921.

    CAS  Google Scholar 

  • Balhorn, R., Tanphaichitr, N., Chalkley, R., and Granner, D. K., 1973, The effect of inhibition of deoxyribonucleic acid synthesis on histone phosphorylation. Biochem. 12:5146–5150.

    CAS  Google Scholar 

  • Balhorn, R., Jackson, V., Granner, D., and Chalkley, R., 1975, Phosphorylation of the lysine-rich histones throughout the cell cycle, Biochemistry 14:2504–2511.

    PubMed  CAS  Google Scholar 

  • Billen, D., and Hnilica, L. S., 1964, Inhibition of DNA synthesis by histones, in The Nucleohistones (J. Bonner and P. O. P. Ts’O, eds.) pp. 289–297, Holden-Day, San Francisco.

    Google Scholar 

  • Bondy, S. C., 1971, Synthesis and decay of histone fractions and of deoxyribonucleic acid in the developing avian brain, Biochem. J. 123:465–469.

    PubMed  CAS  Google Scholar 

  • Bonner, W. M., and Pollard, H. B., 1975, The presence of F3-F2al dimers and Fl oligomers in chromatin, Biochem. Biophys. Res. Commun. 64:282–288.

    PubMed  CAS  Google Scholar 

  • Borun, T. W., Scharff, M., and Robbins, E., 1967, Rapidly labeled, polysome associated RNA having the properties of histone messenger, Proc. Natl. Acad. Sci. U.S.A. 58:1977–1983.

    PubMed  CAS  Google Scholar 

  • Bradbury, E. M., Carpenter, B. G., and Rattle, H. W. E., 1973a, Magnetic resonance studies of deoxyribonucleoprotein, Nature 241:123–125.

    CAS  Google Scholar 

  • Bradbury, E. M., Inglis, R. J. Matthews, H. R., and Sarner, N., 1973b, Phosphorylation of very lysine-rich histones in Physarum polycephalum. Correlation with chromosome condensation, Eur. J. Biochem. 33:131–139.

    CAS  Google Scholar 

  • Bradbury, E. M., Inglis, R. J., and Matthews, H. R., 1974, Control of cell division by very lysine-rich histone (Fl) phosphorylation, Nature 247:257–261.

    PubMed  CAS  Google Scholar 

  • Bradbury, E. M., Cary, P. D., Chapman, G. E., Crane-Robinson, C., Danby, S. E., Rattle, H. W. E., Boublik, M., Palau, J., and Aviles, F. J., 1975, Studies on the role and mode of operation of the very lysine-rich histone H1 (Fl) in eukaryote chromatin. The conformation of histone H1, Eur. J. Biochem. 52:605–613.

    PubMed  CAS  Google Scholar 

  • Breindl, M., and Gallwitz, D., 1974, On the translational control of histone synthesis. Quantitation of biologically active histone mRNA from synchronized HeLa cells and its translation in different cell-free systems, Eur. J. Biochem. 45:91–97.

    PubMed  CAS  Google Scholar 

  • Britten, R. J., and Kohne, D. E., 1968, Repeated sequences in DNA, Science 161:529–540.

    PubMed  CAS  Google Scholar 

  • Bustin, M., 1971, Nitration of the tyrosine in histone Fl in salt solutions and in Fl polyanion complexes, Biochim. Biophys. Acta 251:172–178.

    PubMed  CAS  Google Scholar 

  • Bustin, M., and Cole, R. D., 1968, Species and organ specificity in very lysine-rich histones, J. Biol. Chem. 243:4500–4505.

    PubMed  CAS  Google Scholar 

  • Bustin, M., and Cole, R. D., 1969, Bisection of a lysine-rich histone by N-bromosuccinimide, J. Biol. Chem. 244:5291–5294.

    PubMed  CAS  Google Scholar 

  • Bustin, M., and Cole, R. D., 1970, Regions of high and low cationic charge in a lysine-rich histone, J. Biol. Chem. 245:1458–1466.

    PubMed  CAS  Google Scholar 

  • Bustin, M., and Stollar, B. D., 1973, Immunological relatedness of thymus and liver Fl histone subfractions, J. Biol. Chem. 248:3506–3510.

    PubMed  CAS  Google Scholar 

  • Bustin, M., Rail, S. C., Stellwagen, R. H., and Cole, R. D., 1969, Histone structure: Asymmetric distribution of lysine residues in lysine-rich histone, Science 163:391–393.

    PubMed  CAS  Google Scholar 

  • Chae, C-B., Smith, M. C., and Irvin, J. L., in 1972, Effect of in vitro histone phosphorylation on template activity of rat liver chromatin, Biochim. Biophys. Acta 287:134–153.

    PubMed  CAS  Google Scholar 

  • Chalkley, R., and Hunter, C., 1975, Histone-histone propinquity by aldehyde fixation of chromatin, Proc. Natl. Acad. Sci. U.S.A. 72:1304–1308.

    PubMed  CAS  Google Scholar 

  • Chapman, G. E., Hartman, P. G., and Bradbury, E. M., 1976, Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The isolation of the globular and non-globular regions of the histone H1 molecule, Eur. J. Biochem. 61:69–75.

    PubMed  CAS  Google Scholar 

  • Cohen, R. J., and Stein, G. S., 1975, Chromosomal proteins of Phycomyces blakesleeanus, Exp. Cell Res. 96:247–254.

    PubMed  CAS  Google Scholar 

  • Costa, M., Gerner, E. W., and Russell, D. H., 1976, G1 specific increases in cyclic AMP levels and protein kinase activity in Chinese hamster ovary cells. Biochim. Biophys. Acta 425:246–255.

    PubMed  CAS  Google Scholar 

  • Crampton, C. F., Stein, W. H., and Moore, S., 1957, Comparative studies on chromatographi-cally purified histones, J. Biol. Chem. 225:363–386.

    PubMed  CAS  Google Scholar 

  • DeLange, R. J., Fambrough, D. M., Smith, E. L., and Bonner, J., 1969, Calf and pea histone IV. III. Complete amino acid sequence of pea seedling histone IV. Comparison with the homologous calf thymus histone, J. Biol. Chem. 244:5669–5679.

    PubMed  CAS  Google Scholar 

  • DeNooij, E. H., and Westenbrink, H. G. K., 1962, Isolation of homogenous lysine-rich histone from calf thymus, Biochim. Biophys. Acta 62:608–609.

    CAS  Google Scholar 

  • Dixon, G. H., Candido, E. P. M., and Louie, A. J., 1973, The role of enzymatic modification in the control of histone and protamine binding to DNA, in Protein Phosphorylation in Control Mechanisms (Miamia Winter Symposia, Vol. 5 (F. Huijing and E. Y. C. Lee, eds.) pp. 279–285, Academic Press, New York.

    Google Scholar 

  • Easton, D., and Chalkley, R., 1972, High-resolution electrophoretic analysis of the histones from embryos and sperm of Arbacia punctulata, Exp. Cell Res. 72:502–508.

    PubMed  CAS  Google Scholar 

  • Elgin, S. C. R., and Weintraub, H., 1975, Chromosomal proteins and chromatin structure, Ann. Rev. Biochem. 44:725–774.

    PubMed  CAS  Google Scholar 

  • Fambrough, D. M., and Bonner, J., 1966, On the similarity of plant and animal histones, Biochemistry 5:2563–2570.

    PubMed  CAS  Google Scholar 

  • Fambrough, D. M., Fujimura, F., and Bonner, J., 1968, Quantitative distribution of histone components in the pea plant, Biochem. 7:575–584.

    CAS  Google Scholar 

  • Feldman, M. K., and Hohmann, P., 1971, Identification of mouse casein components following immunodiffusion and electrophoretic analysis, Int. J. Biochem. 2:477–481.

    Google Scholar 

  • Finch, J. T., and Klug, A., 1976, Solenoidal model for superstructure in chromatin, Proc. atl. Acad. Sci. U.S.A. 73:1897–1901.

    CAS  Google Scholar 

  • Franco, L., Johns, E. W., and Navlet, J. M., 1974, Histones from baker’s yeast. Isolation and fractionation, Eur. J. Biochem. 45:83–89.

    PubMed  CAS  Google Scholar 

  • Goff, C. G., 1976, Histones of Neurospora crassa, J. Biol. Chem. 251:4131–4138.

    PubMed  CAS  Google Scholar 

  • Goldblatt, D., and Bustin, M., 1975, Exposure of histone antigenic determinants in chromatin, Biochemistry 14:1689–1695.

    PubMed  CAS  Google Scholar 

  • Gorovsky, M. A. Keevert, J. B., and Pleger, G. L., 1974, Histone Fl of Tetrahymena macronuclei. Unique electrophoretic properties and phosphorylation of Fl in an amitotic nucleus, J. Cell Biol. 61:134–145.

    PubMed  CAS  Google Scholar 

  • Gorovsky, M. A., and Keevert, J. B., 1975, Absence of histone Fl in a mitotically dividing, genetically inactive nucleus, Proc. Natl. Acad. Sci. U.S.A. 72:2672–2676.

    PubMed  CAS  Google Scholar 

  • Greenaway, P. J., and Murray, K., 1971, Heterogeneity and polymorphism in chicken erythrocyte histone fraction V, Nature, New Biol. 229:233–238.

    CAS  Google Scholar 

  • Gross, K., Probst, E., Schaffner, W., and Bimsteil, M., 1976a, Molecular analysis of the histone gene cluster of Psammechinus miliaris: I. Fractionation and identification of five individual histone mRNAs, Cell 8:455–469.

    CAS  Google Scholar 

  • Gross, K., Schaffner, W., Telford, J., and Birnsteil, M., 1976b, Molecular analysis of the histone gene cluster of Psammechinus miliaris: III. Polarity and asymmetry of the histone-coding sequences, Cell 8:479–484.

    CAS  Google Scholar 

  • Grunstein, M., and Schedl, P., 1976, Isolation and sequence analysis of sea urchin (Lytechinus pictus) histone H4 messenger, RNA, J. Mol. Biol. 104:323–349.

    PubMed  CAS  Google Scholar 

  • Grunstein, M., Schedl, P., and Kedes, K., 1976, Sequence analysis and evolution of sea urchin (Lytechinus pictus and Stronglyocentrotus purpuratus) histone H4 messenger RNAs, J. Mol. Biol. 104:351–369.

    PubMed  CAS  Google Scholar 

  • Gurley, L. R., and Hardin, J. M., 1970, The metabolism of histone fractions. III. Synthesis and turnover of histone Fl, Arch. Biochem. Biophys. 136:392–401.

    PubMed  CAS  Google Scholar 

  • Gurley, L. R., Irvin, J. L., and Holbrook, D. J., 1964, Inhibition of DNA polymerase by histones, Biochem. Biophys. Res. Commun. 14:527–532.

    PubMed  CAS  Google Scholar 

  • Gurley, L. R., Walters, R. A., and Tobey, R. A., 1973a, The metabolism of histone fractions. VI, Differences in the phosphorylation of histone fractions during the cell cycle, Arch. Biochem. Biophys. 154:212–218.

    CAS  Google Scholar 

  • Gurley, L. R., Walters, R. A., and Tobey, R. A., 1973b, Histone phosphorylation in late interphase and mitosis, Biochem. Biophys. Res. Commun. 50:744–750.

    CAS  Google Scholar 

  • Gurley, L. R., Walters, R. A., and Tobey, R. A., 1974a, Cell cycle-specific changes in histone phosphorylation associated with cell proliferation and chromosome condensation. J. Cell Biol. 60:356–364.

    CAS  Google Scholar 

  • Gurley, L. R., Walters, R. A., and Tobey, R., 1974b, The metabolism of histone fractions. Phosphorylation and synthesis of histones in late G1-arrest, Arch. Biochem. Biophys. 164:469–477.

    CAS  Google Scholar 

  • Gurley, L. R., Walters, R. A., and Tobey, R. A., 1975, Sequential phosphorylation of histone subfractions in the Chinese hamster cell cycle, J. Biol. Chem. 250:3936–3944.

    PubMed  CAS  Google Scholar 

  • Hancock, R., 1969, Conservation of histones in chromatin during growth and mitosis in vitro, J. Mol. Biol. 40:457–466.

    PubMed  CAS  Google Scholar 

  • Hardie, D. G., Matthews, H. R., and Bradbury, E. M., 1976, Cell cycle dependence of two nuclear histone kinase enzyme activities, Eur. J. Biochem. 66:37–42.

    PubMed  CAS  Google Scholar 

  • Hershko, A., Mamont, P., Shields, R., and Tomkins, G. M., 1971, Pleiotypic response, Nature, New Biol. 232:206–211.

    CAS  Google Scholar 

  • Hildebrand, C. E., and Tobey, R. A., 1973, Temporal organization of DNA in Chinese hamster cells: Cell cycle-dependent association of DNA with membrane, Biochim. Biophys. Acta 331:165–180.

    PubMed  CAS  Google Scholar 

  • Hildebrand, C. E., and Tobey, R. A., 1975, Cell-cycle-specific changes in chromatin organization, Biochem. Biophys. Res. Commun. 63:134–139.

    PubMed  CAS  Google Scholar 

  • Hnilica, L. S., 1972, The Structure and Biological Function of Histones, CRC Press, Cleveland.

    Google Scholar 

  • Hohmann, P., 1976, Timing of H1 histone phosphorylation and the cell cycle, J. Cell Biol. 70:403 abst.

    Google Scholar 

  • Hohmann, P., and Cole, R. D., 1969, Hormonal effects on amino acid incorporation into lysine-rich histones, Nature 223:1064–1066.

    PubMed  CAS  Google Scholar 

  • Hohmann, P., and Cole, R. D., 1971, Hormonal effects on amino acid incorporation into lysine-rich histones in the mouse mammary gland, J. Mol. Biol. 58:533–540.

    PubMed  CAS  Google Scholar 

  • Hohmann, P., Cole, R. D., and Bern, H. A., 1971, Comparison of lysine-rich histones in various normal and neoplastic mouse tissues, J. Nad. Cancer Inst. 47:337–341.

    CAS  Google Scholar 

  • Hohmann, P., Bern. H. A., and Cole, R. D., 1972, Responsiveness of preneoplastic and neoplastic mouse mammary tissues to hormones: Casein and histone synthesis, J. Natl. Cancer Inst. 49:355–360.

    PubMed  CAS  Google Scholar 

  • Hohmann, P., Tobey, R. A., and Gurley, L. R., 1975, Cell-cycle-dependent phosphorylation of serine and threonine in Chinese hamster cell fl histones, Biochem. Biophys. Res. Commun. 63:126–133.

    PubMed  CAS  Google Scholar 

  • Hohmann, P., Tobey, R. A., and Gurley, L. R., 1976, Phosphorylation of distinct regions of fl histone. Relationship to the cell cycle, J. Biol. Chem. 251:3685–3692.

    PubMed  CAS  Google Scholar 

  • Hsiang, M. W., and Cole, R. D., 1973, The isolation of histone from Neurospora crassa, J. Biol. Chem. 248:2007–2013.

    PubMed  CAS  Google Scholar 

  • Hsie, A. W., and Puck, T. T., 1971, Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3′,5′-monophosphate and testosterone, Proc. Natl. Acad. Sci. U.S.A. 68:358–361.

    PubMed  CAS  Google Scholar 

  • Huang, R. C. C., and Bonner, J., 1962, Histone, a suppressor of chromosomal RNA synthesis, Proc. Natl. Acad. Sci. U.S.A. 48:1216–1222.

    PubMed  CAS  Google Scholar 

  • Huntley, G. H., and Dixon, G. H., 1972, The primary structure of the NH2-terminal region of histone T, J. Biol Chem. 247:4916–4919.

    PubMed  CAS  Google Scholar 

  • Inglis, R. J., Langan, T. A., Matthews, H. R., Hardie, D. G., and Bradbury, E. M., 1976, Advance of mitosis by histone Phosphokinase, Exp. Cell Res. 97:418–425.

    PubMed  CAS  Google Scholar 

  • Jackson, V., Granner, D., and Chalkley, R., 1976, Deposition of histone onto the replicating chromosome: Newly synthesized histone is not found near the replication fork, Proc. Natl. Acad. Sci. U.S.A. 73:2266–2269.

    PubMed  CAS  Google Scholar 

  • Jacob, E., 1976, Histone gene reiteration in the genome of mouse, Eur. J. Biochem. 65:275–284.

    PubMed  CAS  Google Scholar 

  • Johmann, C. A., and Gorovsky, M. A., 1976a, Purification and characterization of the histones associated with the macronucleus of Tetrahymena, Biochemistry 15:1249–1256.

    CAS  Google Scholar 

  • Johmann, C., and Gorovsky, M. A., 1976b, The lysine-rich histones of Tetrahymena, J. Cell Biol. 70:322 abst.

    Google Scholar 

  • Johns, E. W., 1964, Studies on histones 7. Preparative methods for histone fractions from calf thymus, Biochem. J. 92:55–59.

    PubMed  CAS  Google Scholar 

  • Jones, G. M. T., Rall, S. C., and Cole, R. D., 1974, Extension of the amino acid sequence of a lysine-rich histone, J. Biol. Chem. 249:2548–2553.

    PubMed  CAS  Google Scholar 

  • Kedes, L. H., 1976, Histone messengers and histone genes, Cell 8:321–331.

    PubMed  CAS  Google Scholar 

  • Kettaneh, N. P., and Hartl, D. L., 1976, Histone transition during spermiogenesis is absent in segregation distorter males of Drosophila melanogaster, Science 193:1020–1021.

    PubMed  CAS  Google Scholar 

  • Kinkade, J. M., 1969, Qualitative species differences and quantitative tissue differences in the distribution of lysine-rich histones, J. Biol. Chem. 244:3375–3386.

    PubMed  CAS  Google Scholar 

  • Kinkade, J. M., 1971, Differences in the quantitative distribution of lysine-rich histones in neoplastic and normal tissues, Proc. Soc. Exp. Biol. Med. 137:1131–1134.

    PubMed  Google Scholar 

  • Kinkade, J. M., and Cole, R. D., 1966a, The resolution of four lysine-rich histones derived from calf thymus, J. Biol. Chem. 241:5790–5797.

    CAS  Google Scholar 

  • Kinkade, J. M., and Cole, R. D., 1966, A structural comparison of different lysine-rich histones of calf thymus, J. Biol. Chem. 241:5798–5805.

    PubMed  CAS  Google Scholar 

  • Kistler, W. S., and Geroch, M. E., 1975, An unusual pattern of lysine-rich histone components is associated with spermatogenesis in rat testis, Biochem. Biophys. Res. Commun. 63:378–384.

    PubMed  CAS  Google Scholar 

  • Komberg, R. D., 1974, Chromatin structure: A repeating unit of histones and DNA, Science 184:868–871.

    Google Scholar 

  • Komberg, R. D., and Thomas, J. O., 1974, Chromatin structure: Oligomers of the histones, Science 184:865–868.

    Google Scholar 

  • Lake, R. S., 1973, Further characterization of the fl histone Phosphokinase of metaphase-arrested animal cells, J. Cell Biol. 58:317–331.

    PubMed  CAS  Google Scholar 

  • Langan, T. A., 1968, Histone phosphorylation: Stimulation by adenosine 3′,5′-monophos-phate, Science 162:579–580.

    PubMed  CAS  Google Scholar 

  • Langan, T. A., 1969, Phosphorylation of liver histone following the administration of glucagon and insulin, Proc. Natl. Acad. Sci. U.S.A. 64:1276–1283.

    PubMed  CAS  Google Scholar 

  • Langan, T. A., 1971, Cyclic AMP and histone phosphorylation, Ann. N.Y. Acad. Sci. 185:166–180.

    PubMed  CAS  Google Scholar 

  • Langan, T. A., and Hohmann, P., 1974, Phosphorylation of threonine and serine residues of lysine-rich histone in growing cells, Fed. Proc. 33:1597 abst.

    Google Scholar 

  • Langan, T. A., and Hohmann, P., 1975, Analysis of specific phosphorylation sites in lysine-rich (H1) histone: An approach to the determination of structural chromosomal protein function, in Chromosomal Proteins and their Role in the Regulation of Gene Expression (G. S. Stein and L. J. Kleinsmith, eds.), pp. 113–121, Academic Press, New York.

    Google Scholar 

  • Langan, T. A., Rall, S. C., and Cole, R. D., 1971, Variation in primary structure at a phosphorylation site in lysine-rich histones, J. Biol. Chem. 246:1942–1944.

    PubMed  CAS  Google Scholar 

  • Lazo, J. S., Prasad, K. N., and Ruddon, R. W., 1976, Synthesis and phosphorylation of chromatin-associated proteins in cAMP-induced “differentiated” neuroblastoma cells in culture, Exp. Cell Res. 100:41–46.

    PubMed  CAS  Google Scholar 

  • Lea, M., Youngworth, L., and Morris, H., 1974, Acid soluble proteins of rat liver: Differential absorbance of bound dyes and changes in neoplasia, Biochem. Biophys. Res. Commun. 58:862–867.

    PubMed  CAS  Google Scholar 

  • Luck, J. M., Rasmussen, P. S., Satake, K., and Tsvetikov, A. N., 1958, Further studies on the fractionation of calf thymus histone, J. Biol. Chem. 233:1407–1414.

    PubMed  CAS  Google Scholar 

  • Marks, D. B., Paik, W. K., and Borun, T. W., 1973, The relationship of histone phosphorylation to DNA replication and mitosis during the HeLa S-3 cell cycle, J. Biol. Chem. 248:5660–5667.

    PubMed  CAS  Google Scholar 

  • Marks, D. B., Kanefsky, T., Keller, B. J., and Marks, A. D., 1975, The presence of histone H1° in human tissues, Cancer Res. 35:886–889.

    PubMed  CAS  Google Scholar 

  • Marsh, W., and Fitzgerald, P., 1973, Pancreas acinar cell regeneration. XIII. Histone synthesis and modification, Fed. Proc. 32:2119–2125.

    PubMed  CAS  Google Scholar 

  • Medvedeva, M. N., Huschtscha, L. I., and Medvedev, Zh. A., 1975, The methionine-containing subfraction of Fl histone from rat tissues, FEBS Lett. 53:253–257.

    PubMed  CAS  Google Scholar 

  • Mohberg, J., Rusch, H. P., 1969, Isolation of the nuclear histones from myxomycete Physarum polycephalum, Arch. Biochem. Biophys. 134:577–589.

    PubMed  CAS  Google Scholar 

  • Moll, R., and Wintersberger, E., 1976, Synthesis of yeast histones in the cell cycle, Proc. Natl. Acad. Sci. U.S.A. 73:1863–1867.

    PubMed  CAS  Google Scholar 

  • Nelson, R. D., and Yunis, J. J., 1969, Species and tissue specificity of very lysine- and serine-rich histones, Exp. Cell Res. 57:311–318.

    PubMed  CAS  Google Scholar 

  • Netrawali, M. S., 1970, On the presence of histones in Euglena gracilis var. Bacillaris, Exp. Cell Res. 63:422–426.

    PubMed  CAS  Google Scholar 

  • Oliver, D., and Chalkley, R., 1972, An electrophoretic analysis of Drosophila histones. I. Isolation and identification, Exp. Cell. Res. 73:295–302

    PubMed  CAS  Google Scholar 

  • O’Neill, J. P. Schroder, C. H., Riddle, J. C., and Hsie, A. W., 1976, The cell cycle specificity of the morphological conversion of Chinese hamster ovary cells by N6,O2′-dibutyryl cyclic adenosine 3′,5′-monophosphate, Exp. Cell Res. 97:213–217.

    PubMed  Google Scholar 

  • Panyim, S., and Chalkley, R., 1969, A new histone found only in mammalian tissues with little cell division, Biochem. Biophys. Res. Commun. 37:1042–1049.

    PubMed  CAS  Google Scholar 

  • Panyim, S., Bilek, D., and Chalkley, R., 1971, An electrophoretic comparison of vertebrate histones, J. Biol. Chem. 246:4206–4215.

    PubMed  CAS  Google Scholar 

  • Park, W. D., Stein, J. L., and Stein, G. S., 1976, Activation of in vitro histone gene transcription from HeLa S3 chromatin by S-phase nonhistone chromosomal proteins, Biochemistry 15:3296–3300.

    PubMed  CAS  Google Scholar 

  • Phelan, J. J., Subirana, J. A., and Cole, R. D., 1972, An unusual group of lysine-rich histones from gonads of a sea cucumber, Holothuria tubulosa, Eur. J. Biochem. 31:63–68.

    PubMed  CAS  Google Scholar 

  • Puigdomenech, P., Martinez, P., Cabre, O., Palau, J., Bradbury, E. M., and Crane-Robinson, C., 1976, Studies on the role and mode of operation of the very lysine-rich histones in eukaryote chromatin. Nuclear-magnetic resonance studies on the nucleoprotein and histone øl DNA complexes from marine invertebrate sperm. Eur. J. Biochem. 65:357–363.

    PubMed  CAS  Google Scholar 

  • Rall, S. C., and Cole, R. D., 1971, Amino acid sequence and sequence variability of the amino terminal regions of lysine-rich histones, J. Biol. Chem. 246:7175–7190.

    PubMed  CAS  Google Scholar 

  • Renz, M., and Day, L. A., 1976, Transition from noncooperative to cooperative and selective binding of histone H1 to DNA, Biochem. 15:3220–3228.

    CAS  Google Scholar 

  • Robbins, E., and Borun, T. W., 1967, The cytoplasmic synthesis of histones in HeLa cells and its temporal relationship to DNA replication, Proc. Natl. Acad. Sci. U.S.A. 57:409–416.

    PubMed  CAS  Google Scholar 

  • Russell, D. H., and Stambrook, P. J., 1975, Cell cycle specific fluctuations in adenosine 3′:5′-cyclic monophosphate and polyamines in Chinese hamster cells, Proc. Natl. Acad. Sci. U.S.A. 72:1482–1486.

    PubMed  CAS  Google Scholar 

  • Schaffner, W., Gross, K., Telford, J., and Bimsteil, M., 1976, Molecular analysis of the histone gene cluster of Psammechinus miliaris: II. The arrangement of the five histone-coding and spacer sequences, Cell 8:471–478.

    PubMed  CAS  Google Scholar 

  • Seale, R. L., 1976, Temporal relationships of chromatin protein synthesis, DNA synthesis and assembly of deoxyribonucleoprotein, Proc. Natl. Acad. Sci. U.S.A. 73:2270–2274.

    PubMed  CAS  Google Scholar 

  • Seligy, V., Roy, C., Dove, M., and Yaguchi, M., 1976, Species variability of the N-terminal sequence of avian erythrocyte-specific histone H5, Biochem. Biophys. Res. Commun. 71:196–202.

    PubMed  CAS  Google Scholar 

  • Sherod, D., Johnson, G., and Chalkley, R., 1974, Studies on the heterogeneity of lysine-rich histones in dividing cells, J. Biol. Chem. 249:3923–3931.

    PubMed  CAS  Google Scholar 

  • Sherod, D., Johnson, G., Balhorn, R., Jackson, V., Chalkley, R., and Granner, D., 1975, The phosphorylation region of lysine-rich histone in dividing cells, Biochim. Biophys. Acta 381:337–347.

    PubMed  CAS  Google Scholar 

  • Smerdon, M. J., and Isenberg, I., 1976a, Conformational changes in subfractions of calf thymus histone H1, Biochemistry 15:4233–4242.

    CAS  Google Scholar 

  • Smerdon, M. J., and Isenberg, I., 1976b, Interactions between the subfractions of calf thymus H1 and nonhistone chromosomal proteins HMGl and HMG2, Biochemistry 15:4242–4247.

    CAS  Google Scholar 

  • Spiker, S., 1976, Expression of parental histone genes in the intergenic hybrid Triticale hexaploide, Nature 259:418–420.

    PubMed  CAS  Google Scholar 

  • Stambrook, P. J., and Velez, C., 1976, Reversible arrest of Chinese hamster V79 cells in G2 by dibutyryl cyclic AMP, Exp. Cell Res. 99:57–62.

    PubMed  CAS  Google Scholar 

  • Stedman, E., and Stedman, E., 1950, Cell specificity of histones, 166:780–781.

    CAS  Google Scholar 

  • Stein, J. L., Reed, K., and Stein, G. S., 1976, Effects of histones and nonhistone chromosomal proteins on the transcription of histone genes from HeLa S3 cell DNA, Biochemistry 15:3291–3295.

    PubMed  CAS  Google Scholar 

  • Stellwagen, R. H., and Cole, R. D., 1968, Comparison of histones obtained from mammary gland at different stages of development and lactation, J. Biol. Chem. 243:4456–4462.

    PubMed  CAS  Google Scholar 

  • Stellwagen, R. H., and Cole, R. D., 1969a, Chromosomal proteins, Annu. Rev. Biochem. 38:951–990.

    CAS  Google Scholar 

  • Stellwagen, R. H., and Cole, R. D., 1969b, Histone biosynthesis in the mammary gland during development and lactation, J. Biol. Chem. 244:4878–4887.

    CAS  Google Scholar 

  • Strickland, W. N., Schaller, H., Strickland, M., and Van Holt, C., 1976, Partial amino acid sequence of histone H1 from the sperm of the sea urchin Parechinus angulosus, FEBS Lett. 66:322–327.

    PubMed  CAS  Google Scholar 

  • Subirana, J. A., Palau, J., Cozcolluela, C., and Ruiz-Carillo, A., 1970, Very lysine-rich histone of echinoderms and molluscs, Nature 228:992–993.

    PubMed  CAS  Google Scholar 

  • Tanphaichitr, N., Balhorn, R., Granner, D., and Chalkley, R., 1974, Further studies on histone phosphorylation in the presence of inhibitors of DNA synthesis, Biochemistry 13:4249–4254.

    PubMed  CAS  Google Scholar 

  • Thomas, J. O., and Komberg, R. D., 1975a, An octomer of histones in chromatin and free in solution, Proc. Natl. Acad. Sci. U.S.A. 72:2626–2630.

    CAS  Google Scholar 

  • Thomas, J. O., and Kornberg, R. D., 1975b, Cleavable cross-links in the analysis of histone-histone associations, FEBS Lett. 58:353–358.

    CAS  Google Scholar 

  • Topper, Y. J., 1970, Multiple hormone interactions in the development of mammary gland in vitro, Recent Prog. Horm. Res. 26:287–303.

    PubMed  CAS  Google Scholar 

  • Tsanev, R., and Russev, G., 1974, Distribution of newly synthesized histones during DNA replication, Eur. J. Biochem. 43:257–263.

    PubMed  CAS  Google Scholar 

  • Van Holde, K. E., and Isenberg, I., 1975, Histone interactions and chromatin structure, Acc. Chem. Res. 8:327–335.

    Google Scholar 

  • Van Wijk, R., Wicks, W. D., and Clay, K., 1972, Effects of derivatives of cyclic 3′,5′-adenosine monophosphate on the growth, morphology and gene expression of hepatoma cells in culture, Cancer Res. 32:1905–1911.

    Google Scholar 

  • Van Wijk, R., Wicks, W. D., Bevers, M. M., and Van Rijn, J., 1973, Rapid arrest of DNA synthesis by N6,O2′-dibutyryl cyclic adenosine 3′5′-monophosphate in cultured hepatoma cells, Cancer Res. 33:1331–1338.

    PubMed  CAS  Google Scholar 

  • Watson, G., and Langan, T. A., 1973, Effects of fl histone and phosphorylated fl histone on template activity of chromatin, Fed. Proc. 32:588 abst.

    Google Scholar 

  • Weintraub, H., and Groudine, M., 1976, Chromosomal subunits in active genes have an altered conformation, Science 193:848–856.

    PubMed  CAS  Google Scholar 

  • Whitlock, J. P., and Simpson, R. T., 1976, Removal of histone H1 exposes a fifty base pair DNA segment between nucleosomes, Biochemistry 15:3307–3314.

    PubMed  CAS  Google Scholar 

  • Wicks, W. C., Koontz, J., and Wagner, K., 1975, Possible participation of protein kinase in enzyme induction, J. Cyclic Nucl. Res. 1:49–58.

    CAS  Google Scholar 

  • Wigle, D. T., and Dixon, G. H., 1971, A new histone from trout testis, J. Biol. Chem. 246:5636–5644.

    PubMed  CAS  Google Scholar 

  • Willingham, M. C., Johnson, G. S., and Pastan, I., 1972, Control of DNA synthesis and mitosis in 3T3 cells by cyclic AMP, Biochem. Biophys. Res. Commun. 48:743–748.

    PubMed  CAS  Google Scholar 

  • Woodcock, C. L. F., Safer, J. P., and Stanchfield, J. E., 1976, Structural repeating units in chromatin. I. Evidence for their general occurrence, Exp. Cell Res. 97:101–110.

    PubMed  CAS  Google Scholar 

  • Zimmerman, S. B., and Levin, C. J., 1975, Do histones bind to a specific group of DNA sequences in chromatin? A test based on DNA ligase action on reconstituted chromatin. Biochem. Biophys. Res. Commun. 62:357–361.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Hohmann, P. (1978). The H1 Class of Histone and Diversity in Chromosomal Structure. In: Roodyn, D.B. (eds) Subcellular Biochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7942-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7942-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7944-1

  • Online ISBN: 978-1-4615-7942-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics