Skip to main content

Quantitative Analysis of Protein Transport in the Arterial Wall

  • Chapter
Structure and Function of the Circulation

Abstract

The transport and accumulation of proteins in blood vessel walls is important physiologically and may play a role in the pathogenesis of certain disease states. Plasma osmotic pressure is maintained by limiting the transport of plasma proteins, chiefly albumin, across the capillary wall. Lipoproteins may also pass across capillary walls and thus carry cholesterol from the liver to the rest of the body. Abnormalities in lipoprotein uptake by extrahepatic tissue, as in homozygous familial hypercholesterolemia, lead to elevated lipoprotein concentrations in the plasma which may result in increased incidence of atherosclerosis. Atherosclerosis itself is associated with the abnormal accumulation of cholesterol in the arterial wall. Experimental evidence indicates that this cholesterol is derived from lipoproteins, in particular low-density lipoprotein (LDL), in the plasma (Zilversmit, 1968; Smith and Slater, 1970; Dayton and Hashimoto, 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C.W.M., and Bayliss, O.B., 1977, Permeability of inner and outer layers of rat and rabbit aortic wall. Atherosclerosis, 26:419–426.

    Google Scholar 

  • Adams, C.W.M., and Morgan, R.S., 1966, Autoradiographic demonstration of cholesterol filtration and accumulation in atheromatous rabbit aorta. Nature, 210:175–176.

    ADS  Google Scholar 

  • Adams, C.W.M., Morgan, R.S., and Bayliss, O.B., 1970, The differential entry of 125I-albumin into mildly and severely atheromatous rabbit aortas. Atherosclerosis, 11:119–124.

    Google Scholar 

  • Adams, C.W.M., Virag, S., Morgan, R.S., and Orton, C.C., 1968, Dissociation of 3H-cholesterol and 125I-labelled plasma protein influx in normal and atheromatous rabbit aorta. J. Atherosclerosis Res., 8:679–696.

    Google Scholar 

  • Anderson, J.L., and Quinn, J.A., 1974, Restricted transport in small pores. Biophys. J., 14:130–150.

    ADS  Google Scholar 

  • Anderson, R.G.W., Brown, M.S., and Goldstein, J.L., 1977, Role of the coated endocytic vesicle in the uptake of receptor bound low density lipoprotein in human fibroblasts. Cell, 10:351–364.

    Google Scholar 

  • Anderson R.G.W., Goldstein, J.L., and Brown, M.S., 1976, Localization of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homozygote. Proc. Natl. Acad. Sci. USA, 73:2434–2438.

    ADS  Google Scholar 

  • Arminski, L., Weinbaum, S., and Pfeffer, R., 1980, Time dependent theory for vesicular transport across vascular endothelium. J. Theor. Biol., 85:13–43.

    Google Scholar 

  • Batchelor, G.K., 1974, Transport properties of two phase materials with random structure, in Annual Review of Fluid Mechanics (M. Van Dyke, W.G. Vincenti, and F.V. Wehausen, eds.). Annual Reviews Inc., Palo Alto, CA. Vol. 6, 227–255.

    Google Scholar 

  • Bell, F.P., Adamson, I.L., and Schwartz, C.J., 1974a, Aortic endothelial permeability to albumin: focal and regional patterns of uptake and transmural distribution of 131I-albumin in the young pig. Exp. Mol. Pathol., 20:57–68.

    Google Scholar 

  • Bell, F.P., Gallus, A.S., and Schwartz, C.J., 1974b, Focal and regional patterns of uptake and the transmural distribution of 131I-fibrinogen in the pig aorta in vivo. Exp. Mol. Pathol., 20:281–292.

    Google Scholar 

  • Bergel, D.H., Nerem, R.M., and Schwartz, C.J., 1976, Fluid dynamic aspects of arterial disease. Atherosclerosis, 23:253–261.

    Google Scholar 

  • Bierman, E.L., and Albers, J.J., 1975, Lipoprotein uptake by cultured human arterial smooth muscle cells. Biochim. Biophys. Acta., 388:198–202.

    Google Scholar 

  • Bierman, E.L., Stein, O., and Stein, Y., 1974, Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture. Circ. Res., 35:136–150.

    Google Scholar 

  • Bihari-Varga, M., and Vegh, M., 1967, Quantitative studies on the complexes formed between aortic mucopolysaccharides and serum lipoproteins. Biochim. Biophys. Acta., 144:202–210.

    Google Scholar 

  • Bird, R.B., Stewart, W.E., and Lightfoot, E.N., 1960, Transport Phenomena, John Wiley & Sons, New York.

    Google Scholar 

  • Blackshear, P.L., Vargas, F.F., Emerson, P.F., Newel, M.K., Vargas, C.B., and Blackshear, G.B., 1980, Water and ion flux through the artery wall, in: Hemodynamics and the Arterial Wall, Proceedings from a Specialists Meeting (R.M. Nerem and J.R. Guyton, eds.), University of Houston, Houston, Texas, 61–66.

    Google Scholar 

  • Blackshear, P.L., Jr., Vargas, F.F., Vargas, C.B., Pribyl, J.G., and Blackshear, G.L., 1978, Hydraulic conductivity of intact endothelium, permeability of media and consolidation properties in the rabbit aorta, in: The Role of Fluid Mechanics in Atherogenesis, Proceedings from a Specialists Meeting (R.M. Nerem and J.F. Cornhill, eds.), Ohio State University, Columbus, Ohio, 17–1 to 17–6.

    Google Scholar 

  • Bratzler, R.L., 1974, The Transport Properties of Arterial Tissue, PhD Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Bratzler, R.L., Chisolm, G.M., Colton, C.K., Smith, K.A., and Lees, R.S., 1977a, The distribution of labeled low-density lipoproteins across the rabbit thoracic aorta in vivo. Atherosclerosis, 28:289–307.

    Google Scholar 

  • Bratzler, R.L., Chisolm, G.M., Colton, C.K., Smith, K.A., Zilversmit, D.B., and Lees, R.S., 1977b, The distribution of labeled albumin across the rabbit thoracic aorta in vivo. Circ. Res., 40:182–190.

    Google Scholar 

  • Bratzler, R.L., Colton, C.K., and Smith, K.A., 1977c, Theoretical models for transport of LDL in the arterial wall, in Atherosclerosis (G.W. Manning and M. Daria-Haust, eds.), Plenum Pub. Corp., New York, 943–951.

    Google Scholar 

  • Bratzler, R.L., and Schwarz, E.A., 1977, Convective and diffusive transport of labeled albumin through rabbit aortic tissue. Proc. 30th Ann. Conf. Eng. Med. Biol., 318.

    Google Scholar 

  • Bratzler, R.L., Schwarz, E.A., and Gottschlich, D.A., 1977d, Diffusive and convective transport of labeled albumin in rabbit aortic tissue, Text of a paper presented at the 70th Annual Meeting of the American Institute of Chemical Engineers, New York.

    Google Scholar 

  • Bretherton, K.N., Day, A.J., and Skinner, S.L., 1976, Effect of hypertension on the entry of 125I-labeled low density lipoprotein into the aortic intima in normal fed rabbits. Atherosclerosis, 24:99–106.

    Google Scholar 

  • Brown, M.S., and Goldstein, J.L., 1974, Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. USA, 71:788–792.

    ADS  Google Scholar 

  • Brown, M.S., and Goldstein, J.L., 1975, Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell, 6:307–316.

    Google Scholar 

  • Brown, M.S., Ho, Y.K., and Goldstein, J.L., 1976, The low density lipoprotein pathway in human fibroblasts: Relation between cell surface receptor binding and endocytosis of low density lipoprotein. Ann. N.Y. Acad. Sci., 275:244–257.

    ADS  Google Scholar 

  • Bruns, R.R., and Palade, G.E., 1968, Studies on blood capillaries. II. Transport of ferritin across the wall of muscle capillaries. J. Cell. Biol., 37:277–299.

    Google Scholar 

  • Buck, R.C., 1958, The fine structure of endothelium of large arteries. Biophys. Biochem. Cytol., 4:187–191.

    Google Scholar 

  • Calvert, G.D., Scott, P.J., and Sharpe, D.N., 1975, The plasma and tissue turnover and distribution of two radio-iodine labelled pig plasma low density lipoproteins. Atherosclerosis, 22:601–628.

    Google Scholar 

  • Caro, C.G., 1973, Transport of materials betwen blood and wall in arteries. Atherogenesis: Initiating Factors. Ciba Found. Symp., 12 (new series):127–141.

    Google Scholar 

  • Caro, C.G., and Nerem, R.M., 1973, Transport of 14C-4-cholesterol between serum and wall in the perfused dog common carotid artery. Circ. Res., 32:187–205.

    Google Scholar 

  • Caro, C.G., 1974, Transport of 14C-4-cholesterol between perfusing serum and dog common carotid artery: a shear dependent process. Cardiovasc. Res., 8:194–203.

    Google Scholar 

  • Caro, C.G., Laver-Rudich, Z., Meyer, F., Liron, N., and Ebel, W., 1978, Albumin transport in the rabbit common carotid artery, in The Role of Fluid Mechanics in Atherogenesis. Proceedings from a Specialists Meeting (R.M. Nerem and J.F. Cornhill, eds.). The Ohio State University, Columbus, Ohio, 18–1 to 18–4.

    Google Scholar 

  • Caro, C.G., Lever, M.J., and Parker, K.H., 1979, Distribution of 131albumin through the wall of the rabbit common carotid incubated in vitro or perfused in situ. J. Physiol., 296:45P–46P.

    Google Scholar 

  • Casley-Smith, J.R., and Chin, J.C., 1971, The passage of cytoplasmic vesicles across endothelial and mesothelial cells. J. Microsc., 93:167–184.

    Google Scholar 

  • Chien, S., 1978, Transport across arterial endothelium, in Progress in Hemotasis and Thrombosis (T.H. Spaet, ed.), Vol. 4., Grune and Stratton, New York, 1–36.

    Google Scholar 

  • Cliff, W.J., 1971, The ultrastructure of aortic elastic tissue as revealed by prolonged treatment with OSO4. Exp. Mol. Pathol., 15:220–229.

    Google Scholar 

  • Coetzee, G.A., Stein, O., and Stein, Y., 1979, Uptake and degradation of low density lipoproteins (LDL) by confluent, contact-inhibited bovine and human endothelial cells exposed to physiological concentrations of LDL. Atherosclerosis, 33:425–431.

    Google Scholar 

  • Collatz-Christensen, B., Chemnitz, J., Tkocz, I., and Bloabjerg, O., 1977, Repair in arterial tissue: the role of endothelium in the permeability of a healing intimal surface. Acta. Path. Microbiol. Scand., Sect A, 85:297–310.

    Google Scholar 

  • Coltoff-Schiller, B., Goldfischer, S., Adomanz, A.M., and Wolinsky, H., 1976, Endocytosis by vascular smooth muscle cells in vivo and in vitro. Am. J. Pathol., 83:45–60.

    Google Scholar 

  • Colton, C.K., Bratzler, R.L., Smith, K.A., and Lees, R.S., 1979, Transport of protein and lipid into the arterial wall. Adv. Exp. Med. Biol., 115:299–352.

    Google Scholar 

  • Colton, C.K., Friedman, S., Wilson, D.E., and Lees, R.S., 1972a, Ultrafiltration of lipoproteins through a synthetic membrane: Implications for the filtration theory of atherogenesis. J. Clin. Invest., 51:2472–2481.

    Google Scholar 

  • Colton, C.K., Satterfield, C.N., and Lai, C.J., 1975, Diffusion and partitioning of macromolecules within finely porous glass. AIChE J., 21:289–298.

    Google Scholar 

  • Colton, C.K. Schneiderman, G., Ramirez, C.A., Smith, K.A., Lees, R.S., and Stemerman, M.B., 1980, Labeled albumin transport into the normal and de-endothelialized rabbit thoracic aorta in vivo, in Hemodynamics and the Arterial Wall, Proceedings from a Specialists Meeting (R.M. Nerem and J.R. Guyton, eds.). University of Houston, Houston, Texas, 42–46.

    Google Scholar 

  • Colton, C.K., Smith, K.A., Bratzler, R.L., and Lees, R.S., 1972b, “Transport properties of aortic tissue,” Text of paper presented at 65th Annual Meeting of the American Institute of Chemical Engineers, New York, Nov. 29, 1972.

    Google Scholar 

  • Colton, C.K., Smith, K.A., Merrill, E.W., and Farrell, P.C., 1971, Permeability studies with cellulosic membranes. J. Biomed. Mater. Res., 5:459–488.

    Google Scholar 

  • Dayton, S., and Hashimoto, S., 1970, Recent advances in molecular pathology: a review. Exp. Mol. Pathol., 13:253–268.

    Google Scholar 

  • Duncan, L.E., and Buck, K., 1961, Passage of labeled albumin into canine aortic wall in vivo and in vitro. Am. J. Physiol., 200:622–624.

    Google Scholar 

  • Duncan, L.E., Buck, K., and Lynch, A., 1963, Lipoprotein movement through canine aortic wall. Science, 142:972–973.

    ADS  Google Scholar 

  • Duncan, L.E., Buck, K., and Lynch, A., 1965, The effect of pressure and stretching on the passage of labeled albumin into canine aortic wall. J. Atherosclerosis Res., 5:69–79.

    Google Scholar 

  • Duncan, L.E., Cornfield, J., and Buck, K., 1958, Circulation of iodinated albumin through aortic and other connective tissues of the rabbit. Circ. Res., 6:244–255.

    Google Scholar 

  • Duncan, L.E., Cornfield, J., and Buck, K., 1959, Circulation of labeled albumin through the aortic wall of the rabbit. Circ. Res., 7:390–397.

    Google Scholar 

  • Duncan, L.E., Cornfield, J., and Buck, K., 1962, The effect of blood pressure on the passage of labeled plasma albumin into the canine aortic wall. J. Clin. Invest., 41:1537–1545.

    Google Scholar 

  • Feig, L.A., 1976, The Effect of Angiotensin II on Arterial Permeability, SM Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Ferrans, V.J., 1980, Vascular Structure, in Basic Hemodynamics and its Role in Disease Processes (D.J. Patel and R.N. Vaishnav, eds.), University Park Press, Baltimore, 105–154.

    Google Scholar 

  • Florey, L., and Sheppard, B.L., 1970, The permeability of arterial endothelium to horseradish peroxidase. Proc. Roy. Soc. Lond. B, 174:435–443.

    ADS  Google Scholar 

  • Fowler, S., and Wolinsky, H., 1977, Lyosomes in vascular smooth muscle cells, in The Cardiovascular System, Sect. 2, Vol. II, in Handbook of Physiology, American Physiological Society, Washington, DC, 133–160.

    Google Scholar 

  • Fry, D.L., 1973, Response of the arterial wall to certain physical factors, in Atherogenesis: Initiating Factors, Ciba. Found. Symp., 12 (new series):93–124.

    Google Scholar 

  • Fry, D.L., 1976, Hemodynamic forces in atherogenesis, in Cerebrovascular Diseases (P. Scheinberg, ed.), Raven Press, New York, 77–95.

    Google Scholar 

  • Fry, D.L., Mahley, R.W., Oh, S.Y., and Swyt, C.R., 1981, Aortic transmural protein transport. Am. J. Physiol. (In Press).

    Google Scholar 

  • Fry, D.L., Mahley, R.W., Wersgraber, K.H., and Oh, S.Y., 1977, Simultaneous accumulation of Evans blue dye and albumin in the canine aortic wall. J. Physiol., 233:H66–H79.

    Google Scholar 

  • Fry, D.L., and Vaishnav, R.N., 1980, Mass transport in the arterial wall, in: Basic Hemodynamics and its Role in Disease Processes, (D.J. Patel and R.N. Vaishnav, eds.), Univ. Park Press, Baltimore, 425–482.

    Google Scholar 

  • Ghosh, S., Finkelstein, J.N., Moss, D.B., and Schwepp, J.S., 1976, Evaluation of the permeability parameters (influx, efflux, and volume of distribution) of arterial wall for LDL and other proteins, in Atherosclerosis: Drug Discovery (C.E. Day, ed.), Plenum Pub. Corp., New York, 191–204.

    Google Scholar 

  • Goldstein, J.L., Anderson, R.G.W., and Brown, M.S., 1979, Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature, 279:679–685.

    ADS  Google Scholar 

  • Goldstein, J.L., Basu, S.K., Brunschede, G.Y., and Brown, M.S., 1976, Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell, 7:85–95.

    Google Scholar 

  • Goldstein, J.L., and Brown, M.S., 1974, Binding and degradation of low density lipoproteins by cultured human fibroblasts. J. Biol. Chem., 249:5153–5162.

    Google Scholar 

  • Goldstein, J.L., and Brown, M.S., 1975, Lipoprotein receptors, cholesterol metabolism and atherosclerosis. Arch. Pathol., 99:181–184.

    Google Scholar 

  • Goldstein, J.L., and Brown, M.S., 1976, The LDL pathway in human fibroblasts: a receptor-mediated mechanism for the regulation of cholesterol metabolism, in Current Topics in Cellular Regulation (B.L. Horecker and E.R. Stadtman, eds.), Vol. II, Academic Press, New York, 147–181.

    Google Scholar 

  • Goldstein, J.L., and Brown, M.S., 1977, Atherosclerosis: the low-density lipoprotein receptor hypothesis. Metabolism, 26:1257–1275.

    Google Scholar 

  • Guyton, A.C., 1976, Textbook of Medical Physiology, 5th ed., W.B. Saunders, Philadelphia.

    Google Scholar 

  • Harrison, R.G., and Massaro, T.A., 1976, Water flux through porcine aortic tissue due to a hydrostatic pressure gradient. Atherosclerosis, 24:363–367.

    Google Scholar 

  • Hoff, H.F., and Gaubatz, J.W., 1977, Ultrastructural localization of apoprotein B in human aortic and coronary atherosclerotic plaques. Exp. Mol. Pathol., 26:214–227.

    Google Scholar 

  • Hoff, H.F., Heideman, C.L., Jackson, R.L., Bayardo, R.J., Kim, H., and Gotto, A.M., 1975, Localization patterns of plasma apolipo-proteins in human atherosclerotic lesions. Circ. Res., 37:72–79.

    Google Scholar 

  • Hollander, W., 1976, Unified concept on the role of acid mucopolysaccharides and connective tissue proteins in the accumulation of lipids, lipoproteins and calcium in atherosclerotic plaque. Exp. Mol. Pathol., 25:106–120.

    Google Scholar 

  • Huttner, I., Boudet, M., and More, R.H., 1973a, Studies on protein passage through arterial endothelium: I. Structural correlates of permeability in rat arterial endothelium. Lab. Invest., 28:672–677.

    Google Scholar 

  • Huttner, I., Boudet, M., and More, R.H., 1973b, Studies on protein passage through arterial endothelium: II. Regional differences in permeability to fine structural protein tracers in arterial endothelium of normotensive rats. Lab. Invest., 28:678–685.

    Google Scholar 

  • Iverius, P.H., 1972, The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J. Biol. Chem., 247:2607–2613.

    Google Scholar 

  • Iverius, P.H., 1973, Possible role of glycosaminoglycans in the genesis of atherosclerosis, in Atherogenesis: Initiating Factors. Ciba Found. Symp., 12 (new series):185–196.

    Google Scholar 

  • Jellinek, H., Veress, B., Balint, A., and Nagy, Z., 1970, Lymph vessels of rat aorta and their changes in experimental atherosclerosis: an electron microscopic study. Exp. Mol. Pathol., 13:370–376.

    Google Scholar 

  • Jennings, M.A., and Florey, L., 1967, An investigation of some properties of endothelium related to capillary permeability. Proc. Roy. Soc. Lond. B., 167:39–63.

    ADS  Google Scholar 

  • Karnovsky, M.J., 1967, The ultrastructural basis of capillary permeability studies with peroxidase as a tracer. J. Cell. Biol., 35:213–236.

    Google Scholar 

  • Karnovsky, M.J., 1968, The ultrastructural basis of transcapillary exchange. J. Gen. Physiol., 52:64–95.

    Google Scholar 

  • Karnovsky, M.J., and Shea, S.M., 1970, Transcapillary transport by pinocytosis. Microvasc. Res., 2:353–360.

    Google Scholar 

  • Katchalsky, A., and Curran, P.F., 1965, Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Kenyon, D.E., 1979, A mathematical model of water flux through aortic tissue. Bull. Math. Biol., 41:79–90.

    MathSciNet  Google Scholar 

  • Kirk, J.E., and Laursen, J.S., 1955, Diffusion coefficients of various solutes for human aortic tissue with special reference to variation in tissue permeability with age. J. Gerontol., 10:288–302.

    Google Scholar 

  • Koschinsky, T., Carew, T.E., and Steinberg, D., 1977, A comparative study of surface binding of human low density and density lipoproteins to human fibroblasts: regulation by sterols and susceptibility to proteolytic digestion. J. Lipid Res., 18:451–458.

    Google Scholar 

  • Kramsch, D.M., and Hollander, W., 1973, The interaction of serum and arterial lipoprotein with elastin of the arterial intima and its role in the lipid accumulation in atherosclerotic plaque. J. Clin. Invest., 52:236–247.

    Google Scholar 

  • Krishnan, L., Krishnan, E.C., and Jewell, W.R., 1977, Theoretical treatment of the distribution and degradation of vascular, interstitial, and intracellular albumin. J. Theor. Biol., 67:609–623.

    Google Scholar 

  • Landis, E.M., and Pappenheimer, J.R., 1963, Exchange of substances through the capillary walls, in Circulation, Section 2, Vol. Handbook of Physiology, American Physiological Society, Washington, D.C., 961–1034.

    Google Scholar 

  • Miller, N.E., Weinstein, D.B., Carew, T.E., Koschinsky, T., and Steinberg, D., 1977a, Interaction between high density and low density lipoproteins during uptake and degradation by cultured human fibroblasts. J. Clin. Invest., 60:78–88.

    Google Scholar 

  • Miller, N.E., Weinstein, D.B., and Steinberg, D., 1977b, Binding, internalization, and degradation of high density lipoprotein by cultured normal human fibroblasts. J. Lipid Res., 18:438–450.

    Google Scholar 

  • Morris, G.J., Bradby, G.V.H., and Walton, K.W., 1978, Fibrous long-spacing collagen in human atherosclerosis. Atherosclerosis, 3]:345–354.

    Google Scholar 

  • Nerem, R.M., 1981, Arterial fluid dynamics and interactions with the vessel walls, in Structure and Function of the Circulation, Vol. 3 (C.J. Schwartz, N.T. Werthessen, and S. Wolf, eds.), Plenum Press Corp., N.Y. (In Press).

    Google Scholar 

  • Nerem, R.M., Mosberg, A.T., and Schwerin, W.D., 1976, Transendothe-lial transport of 131I-albumin. Biorheology, 13:71–77.

    Google Scholar 

  • Nir, A., and Pfeffer, R., 1979, Transport of macromolecules across the arterial wall in the presence of local endothelial injury. J. Theor. Biol., 81:685–711.

    Google Scholar 

  • Okishio T., 1961, Studies on the transfer of 131I-labeled serum lipoproteins into the aorta of rabbits with experimental atherosclerosis. Med. J. Osaka Univ., 11:367–381.

    Google Scholar 

  • Palade, G.E., Simionescu, M., and Simionescu, N., 1979, Structural aspects of the permeability of the microvascular endothelium. Acta. Physiol. Scand., Suppl. 463:11–32.

    Google Scholar 

  • Patel, D.J., and Vaishnav, R.N., 1980, Some elementary hemodynamic concepts in Basic Hemodynamics and its Role in Disease Processes (D.J. Patel and R.N. Vaishnav, eds.), Univ. Park Press, Baltimore, Maryland, 65–104.

    Google Scholar 

  • Philip, J.R., 1969, Theory of flow and transport processes in pores and porous media, in Circulatory and Respiratory Mass Transport, Ciba Foundation Symposium (G.E.W. Wolstenhome and J. Knight, eds.), Churchill Pub. Co., London, Vol. 25:25–50.

    Google Scholar 

  • Philip, J.R., 1970, Flow in porous media, in Annual Review of Fluid Mechanics (M. Van Dyke, W.G. Vincenti, and J.V. Wehausen, eds.), Vol. 2, Annual Reviews Inc., Palo Alto, CA, 177–204.

    Google Scholar 

  • Ramirez, C.A., Stemerman, M.B., Isaacson, K.B., Colton, C.K., Smith, K.A., and Lees, R.S., 1981, Morphological and morphometric characterization of platelet adhesion to the exposed subendothelium of the rabbit thoracic aorta in vivo. Microvasc. Res. (In Press).

    Google Scholar 

  • Reckless, J.P.D., Weinstein, D.B., and Steinberg, D., 1978, Lipoprotein and cholesterol metabolism in rabbit arterial endothelial cells in culture. Biochim. Biophys. Acta., 529:475–487.

    Google Scholar 

  • Renkin, E.M., 1977, Multiple pathways of capillary permeability. Circ. Res., 41:735–743.

    Google Scholar 

  • Ross, R., and Glomset, J.A., 1976, The pathogenesis of atherosclerosis. New England J. Med., 295:369–376.

    Google Scholar 

  • Rubin, B.T., 1977, A theoretical model of the pinocytotic vesicular transport process in endothelial cells. J. Theor. Biol., 64:619–647.

    Google Scholar 

  • Scheidegger, A.E., 1974, The Physics of Flow Through Porous Media, Butterworth, London.

    Google Scholar 

  • Schwartz, S.M., and Benditt, E.P., 1972, Studies on aortic intima I. Structure and permeability of rat thoracic aortic intima. Am. J. Pathol., 66:241–254.

    Google Scholar 

  • Scott, P.J., and Hurley, P.J., 1971, The distribution of radio-iodinated serum albumin and low-density lipoprotein in tissues and the arterial wall. Atherosclerosis, 11:77–103.

    Google Scholar 

  • Shea, S.M., and Bossert, W.H., 1973, Vesicular transport across endothelium: a generalized diffusion model. Microvasc. Res., 6:305–315.

    Google Scholar 

  • Shea, S.M., and Karnovsky, M.J., 1966, Brownian motion: a theoretical explanation for the movement of vesicles across endothelium. Nature, 212:353–355.

    ADS  Google Scholar 

  • Shea, S.M., Karnovsky, M.J., and Bossert, W.H., 1969, Vesicular transport across endothelium: simulation of a diffusion model. J. Theor. Biol., 24:30–42.

    Google Scholar 

  • Sheppard, B.L., and French, J.E., 1971, Platelet adhesion in rabbit abdominal aorta following the removal of the endothelium: A scanning and transmission electron microscopical study. Proc. Roy. Soc. Lond. B., 176:427–432.

    ADS  Google Scholar 

  • Siflingfer, A., Parker, K., and Caro, C.G., 1975, Uptake of 125I-albumin by the endothelial surface of the isolated dog common carotid artery: effect of certain physical factors and metabolic inhibitors. Cardiovasc. Res., 9:478–489.

    Google Scholar 

  • Simionescu, N., Simionescu, M., and Palade, G.E., 1973, Permeability of muscle capillaries to exogeneous myoglobin. J. Cell Biol., 57:424–452.

    Google Scholar 

  • Simionescu, N., Simionescu, M., and Palade, G.E., 1975, Permeability of muscle capillaries to small heme peptides. J. Cell Biol., 64:586–606.

    Google Scholar 

  • Simionescu, N., Simionescu, M., and Palade, G.E., 1978, Structural basis of permeability in sequential segments of the microvas-culature of the diaphragm. Microvasc. Res., 15:17–36.

    Google Scholar 

  • Smith, E.B., and Slater, R., 1970, The chemical and immunological assay of low density lipoproteins extracted from human thoracic aortic intima. Atherosclerosis, 11:417–438.

    Google Scholar 

  • Somer, J.B., and Schwartz, C.J., 1971, Focal 3H-cholesterol uptake in the pig aorta. Atherosclerosis, 13:293–304.

    Google Scholar 

  • Spiegler, K.S., and Kedem, O., 1966, Thermodynamics of hyperfiltra-tion (reverse osmosis): Criteria for efficient membranes. Desalination, 1, 311–326.

    Google Scholar 

  • Srinivasan, S.R., Yost, K. Radhakrishnamurthy, B., Dalfers, E.R., and Berenson, G.S., 1980, Lipoprotein-hyaluronate associations in human aorta fibrous plaque lesions. Atherosclerosis, 36:25–37.

    Google Scholar 

  • Stein, O., and Stein, Y., 1976, Comparative uptake of rat and human serum low density and high density lipoproteins by rat aortic smooth muscle cells in culture. Circ. Res., 36:436–443.

    Google Scholar 

  • Stein, O., Stein, Y., and Eisenberg, S., 1973, A radioautographic study of the transport of 125I-labeled serum lipoproteins in rat aorta. Z. Zellforsch, 138:223–237.

    Google Scholar 

  • Stein, O., Weinstein, D.B., Stein, Y., and Steinberg, D., 1976, Binding, internalization and degradation of low density lipoprotein by normal human fibroblasts and by fibroblasts from a case of homozygous familial hypercholesterolemia. Proc. Natl. Acad. Sci. USA, 73:14–18.

    ADS  Google Scholar 

  • Stein, Y., and Stein, O., 1973, Lipid synthesis and degradation and lipoprotein transport in mammalian aorta, in Atherogenesis: Initiating Factors, Ciba Found. Symp., 12 (new series):165–184.

    Google Scholar 

  • Steinberg, D., Nestel, P.J., Weinstein, D.B., Remant-Dessmeth, M., and Chang, C.M., 1978, Interactions of native and modified human low density lipoproteins with human skin fibroblasts. Biochim. Biophys. Acta., 528:199–212.

    Google Scholar 

  • Stemerman, M.B., 1975, Platelets and the vessel walls, in Platelets, Drugs and Thrombosis, (J. Hirsch, ed.), Karger, Basel, 54–69.

    Google Scholar 

  • Stemerman, M.B., and Ross, R., 1972, Experimental atherosclerosis. J. Exptl. Med., 136:769–789.

    Google Scholar 

  • Swabb, E.A., Wei, J., and Gullino, P.M., 1974, Diffusion and convection in normal and neoplastic tissue. Cancer Res., 34:2814–2822.

    Google Scholar 

  • Tokita, K., Kanno, K., and Ikedo, K., 1977, Elastin subfraction as binding site for lipids. Atherosclerosis, 28:111–119.

    Google Scholar 

  • Tomlin, S.G., 1969, Vesicular transport across endothelial cells. Biochim. Biophys. Acta., 183:559–564.

    Google Scholar 

  • Torok, J., Nedergaard, O.A., and Bevan, J.A., 1971, Distribution of inulin space in the rabbit thoracic aorta. Experimentia, 27:55.

    Google Scholar 

  • Truskey, G.A., 1981, Theoretical models of LDL transport in the arterial wall, SM Thesis, Massachusetts Institute of Technology (in progress).

    Google Scholar 

  • Vargas, F.F., and Johnson, J.A., 1964, An estimate of reflection coefficient for rabbit heart capillaries. J. Gen. Physiol., 47:667–677.

    Google Scholar 

  • Vargas, C.B., Vargas, F.F., Piribyl, J.G., and Blackshear, P.L., 1979, Hydraulic conductivity of the endothelial and outer layers of the rabbit aorta. Am. J. Physiol., 236:H53–H60.

    Google Scholar 

  • Virag, S., Pozsonyi, T., Deres, R., and Gero, S., 1968, Uptake of 125I-labeled β-lipoprotein by the aortas of animals differently susceptible to cholesterol induced atherosclerosis. J. Atherosclerosis Res., 8:859–860.

    Google Scholar 

  • Wakeham, W.A., Salpodoru, N.N., and Caro, C.G., 1976, Diffusion coefficients for protein molecules in blood serum. Atherosclerosis, 25:225–235.

    Google Scholar 

  • Weinbaum, S., Arminski, L., Pfeffer, R., and Chien, S., 1980, Theoretical models for endothelial junction formation and vesicular transport, in Hemodynamics and the Arterial Wall, Proceedings from a Specialists Meeting (R.M. Nerem and J.R. Guyton, eds.), University of Houston, Houston, Texas, 42–46.

    Google Scholar 

  • Weinbaum, S., and Caro, C.G., 1976, A macromolecular transport model for the arterial wall and endothelium based on the ultrastructural specialization observed in electron microscope studies. J. Fluid Mech., 74:611–640.

    MATH  ADS  Google Scholar 

  • Weinstein, D.B., Carew, T.E., and Steinberg, D., 1976b, Uptake and degradation of low density lipoprotein by swine arterial smooth muscle cells with inhibition of cholesterol biosynthesis. Biochem. et Biophys. Acta., 424:404–421.

    Google Scholar 

  • Wiederhielm, C.A., Fox, J.R., and Lee, D.R., 1976, Ground substance mucopolysaccharides and plasma proteins: their role in capillary water balance. Am. J. Physiol., 230:1121–1125.

    Google Scholar 

  • Wolinsky, H., and Glagov, S., 1967, Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ. Res., 20:409–421.

    Google Scholar 

  • Yamartino, E.J., 1974, Determination of the Arterial Filtration Coefficients of the Rabbit Aorta, SM Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Yamartino, E., Jr., Bratzler, R., Colton, C.K., Smith, K.A., and Lees, R.S., 1974, Hydraulic permeability of arterial tissue. Circulation, 50, Suppl. III, 273.

    Google Scholar 

  • Yasuda, H., Lamaze, C.E., Peterlin, A., 1971, Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. J. Polymer. Sci., A-2 9:1117–1131.

    Google Scholar 

  • Zilversmit, D.B., 1968, Cholesterol flux in the atherosclerotic plaque. Ann. N.Y. Acad. Sci., 149:710–724.

    ADS  Google Scholar 

  • Zweifach, B.W., 1973, Microcirculation. Ann. Rev. Physiol., 35:117–150.

    Google Scholar 

  • Zweifach, B.W., and Silberberg, A., 1979, The interstitial-lymphatic flow system, in International Review of Physiology, Cardiovascular Physiology III (A.C. Guyton and D.B. Young, eds.), University Park Press, Baltimore, Vol. 18:215–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Truskey, G.A., Colton, C.K., Smith, K.A. (1981). Quantitative Analysis of Protein Transport in the Arterial Wall. In: Schwartz, C.J., Werthessen, N.T., Wolf, S. (eds) Structure and Function of the Circulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7927-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7927-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7929-8

  • Online ISBN: 978-1-4615-7927-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics