Sarcoplasmic Proteins and Other Nitrogenous Compounds

  • Norman F. Haard
  • Benjamin K. Simpson
  • Bonnie Sun Pan


Muscles free of depot fat normally contain about 20% nitrogenous compounds. Muscle tissue contains many different kinds of nitrogenous molecules ranging in molecular weight from more than 100,000 to less than 100 daltons (Chapter 2). In number, most of these compounds are classified as sarcoplasmic components because they are soluble in the muscle sarcoplasm in contrast to the proteins in the contractile apparatus (Chapter 4) and connective tissues (Chapter 5). Chemically, nitrogen-containing compounds in fish and shellfish sarcoplasm include water and dilute salt-soluble proteins, peptides, amino acids, amines, amine oxides, guanidine compounds, quaternary ammonium compounds, purines, and urea. Sarcoplasmic proteins normally consist of about 20–25% of total fish muscle protein. The nonprotein-N content of fish muscle is normally higher than that of terrestrial animals ranging from 10–40% of the total nitrogen content.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aas, K. 1987. “Fish Allergy and the Codfish Allergen Model. Pp. 356–366. In Food Allergy and Intolerance, edited by J. Brostoff. London: Tindall BailliereGoogle Scholar
  2. Amano, K. 1949. “Studies on the Green Discoloration of Frozen Swordfish (Xi-phias gladius L.). 1. Isolation of Isovaleric Acid like Substance from Green Colored Flesh.” Bull. Japan. Soc. Sci. Fish. 15 (9): 467–474.Google Scholar
  3. Anzai, H., Asada, H., Koshiba, A., Yoshida, S., Kobayashi, H., Uchida, N., and Nishide, E. 1991. “Distribution of Polysaccharide Digestive Enzymes in a Marine Gastropod Dolabella auricularia”. Nippon Suisan Gakkaishi. 57 (11): 2077–2081.CrossRefGoogle Scholar
  4. Anzai, H., Enami, Y., Chida, T., Okoshi, A., Omura, T., Uchida, N., Nishide, E. 1991. “Polysaccharide Digestive Enzymes from Midgut Gland of Abalone.” Bull. Coll. Agric. Vet. Med., Nihon Univ. 48: 119–128.Google Scholar
  5. Anzai, H., Nanba, Y., Sawada, M., Uchida, N., and Nishide, E. 1992. “Modes of Action of Cellulases from the Gastric Teeth of a Gastropod Dolabella auricularia.” Nippon Suisan Gakkaishi. 58: 159–163.CrossRefGoogle Scholar
  6. Assaf, S. A., and Graves, D. J. 1969. “Structural and Catalytic Properties of Lobster Muscle Glycogen Phosphorylase.” J. Biol. Chem. 244: 5544–5555.PubMedPubMedCentralGoogle Scholar
  7. Audley, M. A., Shetty, K. J., Kinsella, J. E. 1978. “Isolation and Properties of Phospholipase A from Pollock Muscle.” J. Food Sci. 43: 1771–1775.CrossRefGoogle Scholar
  8. Belitz, H.-D., Grosch, W. 1987. “Fish, Whales, Crustaceans, Mollusks,” p. 462. In Food Chemistry. New York: Springer-Verlag.Google Scholar
  9. Berner, D. L., Hammond, E. G. 1970. “Phylogeny of Lipase Specificity.” Lipids 5: 558–562.PubMedCrossRefGoogle Scholar
  10. Bhushana Rao, K. S. P., Focant, B., Gerday, C., Hamoir, G. 1969. “Low Molecular Weight Albumins of Cod White Muscle Gadus callarias L.” Comp. Biochem. Physiol. 30: 33–48.CrossRefGoogle Scholar
  11. Bobak, P., Slechta, V. 1988. “Comparison of Parvalbumins of Some Species of Family Cyprinidae.” Comp. Biochem. Physiol. 91B: 697–699.CrossRefGoogle Scholar
  12. Bracho, G. E., and Haard, N. F. 1991. “Characterization of Alkaline Metalloproteinases with Collagenase Activity from the Muscle of Pacific Rockfish (Sebastes sp.).” Pp. 105–125. In Proceedings of Joint Meeting of Atlantic Fisheries Technologists and Tropical/Subtropical Fisheries Technologists, edited by S. Otwell. Florida Sea Grant: Gainesville, FL.Google Scholar
  13. Brockerhoff, H. 1966. “Digestion of Fat by Cod.” J. Fish. Res. Bd. Canada. 23: 1835–1839.CrossRefGoogle Scholar
  14. Brockerhoff, H. 1967. “Digestion of Triglycerides by Lobster.” Can. J. Biochem. 45: 421–422.PubMedCrossRefGoogle Scholar
  15. Brockerhoff, H., Hoyle, J. R. 1965. “Hydrolysis of Triglycerides by the Pancreatic Lipase of a Skate.” Biochim. Biophys. Acta 98: 435–436.PubMedCrossRefGoogle Scholar
  16. Brooks, S. P., Storey, K. B. 1988. “Subcellular Enzyme Binding in Glycolytic Control: In Vivo Studies with Fish Muscle.” Amer. J. Physiol. 255: R289294.Google Scholar
  17. Brooks, S. P., Storey, K. B. 1988. “Reevaluation of the `Glycolytic complex’ in Muscle: A Multitechnique Approach Using Trout White Muscle.” Arch. Biochem. Biophys. 267: 13–22.Google Scholar
  18. Brown, W. D. 1962. “The Concentration of Myoglobin and Hemoglobin in Tuna Flesh.” J. Food Sci. 27: 26–28.CrossRefGoogle Scholar
  19. Chawla, P., Ablett, R. F. 1987. “Detection of Microsomal Phospholipase Activity in Myotomal Tissue of Atlantic Cod (Gadus morhua).” J. Food Sci. 52 (5): 1194–1197.CrossRefGoogle Scholar
  20. Chen, S. F. 1993. Effects of dietary vitamin E and fish oil on blood lipoxygenase characteristics and viscosity of cultured grey mullet (Mugil cephalus). M.Sc. Thesis, Department of Marine Food Science, National Taiwan Ocean University, 128 pages.Google Scholar
  21. Cuow, C. J., Ochiai, Y., Hashimoto, K. 1985. “Effect of Freezing and Thawing on the Autooxidation of Bluefin Tuna Myoglobin.” Nippon Suisan Gakkaishi. 51: 2073–2078.CrossRefGoogle Scholar
  22. Chow, C. J., Ochiai, Y., Watabe, S., Hashimoto, K. 1987. “Autooxidation of Bluefin Tuna Myoglobin Associated with Freezing and Thawing.” J. Food Sci. 52:589–591,625.Google Scholar
  23. Cowey, C. B. 1967. “Comparative Studies on the Activity of n-Glyceraldehyde3-Phosphate Dehydrogenase from Cold and Warm Blooded Animals with Reference to Temperature.” Comp. Biochem. Physiol. 23: 969–976.PubMedCrossRefGoogle Scholar
  24. Croston, C. B. 1965. “Endopeptidases of Salmon Ceca: Chromatographic Sepa-ration and Some Properties.” Arch. Biochem. Biophys. 112: 218–223.CrossRefGoogle Scholar
  25. Decker, E. A., Crum, A. D. 1991. “Inhibition of Oxidative Rancidity in Salted Ground Pork by Carnosine.” J. Food Sci. 56: 1179–1181.CrossRefGoogle Scholar
  26. Haen, C., Walsh, K. A., Neurath, H. 1977. “Isolation and Amino-Terminal Sequence Analysis of a New Pancreatic Trypsinogen of the African Lungfish Protopterus aethiopicus.” Biochemistry 16: 4421–4425.PubMedCrossRefGoogle Scholar
  27. Dixon, M., Webb, E. C. 1979. Enzymes, 3rd ed. Pp. 633–649. New York: Academic Press.Google Scholar
  28. Dubois, I.,Gerday, Ch. 1990. “Soluble Calcium-Binding Proteins: Parvalbumins and Calmodulin from Eel Skeletal Muscle.” Comp. Biochem. Physiol. 95B: 381–385.Google Scholar
  29. Eisen, A. Z., Jeffrey, J. J. 1969. “An Extractable Collagenase from Crustacean Hepatopancreas.” Biochem. Biophys. Acta 191: 517–526.PubMedPubMedCentralGoogle Scholar
  30. Elsayed, S.,Bennich, H. 1975. “Primary Structure of Allergen M from Cod.” Scand. J. Immunol. 4: 203–208.PubMedCrossRefGoogle Scholar
  31. Eskin, N. A. M. 1990. Biochemistry of Foods, 2nd ed. Pp. 24–26. New York: Academic Press.Google Scholar
  32. Fenney, R. E. 1988. “Inhibition and Promotion of Freezing: Fish Antifreeze Proteins and Ice-Nucleating Proteins.” Comments Agric. Food Chem. 1:147181.Google Scholar
  33. Ferrer, O. J., Koburger, J. A., Simpson, B. K., Gleeson, R. A., Marshall, M. R. 1989. “Phenoloxidase Levels in Florida Spiny Lobster (Panulirus argus): Relationship to Season and Molting Stage.” Comp. Biochem. Physiol. 93B: 595–599.Google Scholar
  34. Finne, G. 1992. “Non-protein Nitrogen Compounds in Fish and Shellfish.” Pp. 393–401. In Advances in Seafood Biochemistry, Composition and Quality, edited by G. J. Flick and R. E. Martin. Lancaster, PA: Technomic Publishing.Google Scholar
  35. Folco, E. J., Busconi, L., Martone, C. B., and Sanchez, J. J. 1989. “Fish Skeletal Muscle Contains a Novel Serine Proteinase with an Unusual Subunit Composition.” Biochem. J. 263: 471–475.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Frankenne, F., Joassin, L., and Gerday, C. 1973. “Amino Acid Sequence of the Pike Esox lucius Parvalbumin III.” FEBS Lett. 35: 145–147.PubMedCrossRefGoogle Scholar
  37. Fruton, J. S., and Bergmann, M. 1940. “The Specificity of Salmon Pepsin.” J. Biol. Chem. 136: 559–560.Google Scholar
  38. Gazzaz, S. S., and Rasco, B. A. 1992. “Parvalbumins in Fish and Their Role as Food Allergens: A Review.” Rev. Fish. Sci. 1: 1–26.CrossRefGoogle Scholar
  39. Geist, G. M., and Crawford, D. L. 1974. “Muscle Cathepsins in Three Species of Pacific Sole.” J. Food Sci. 39: 548–551.CrossRefGoogle Scholar
  40. Gerday, C., Collin, S.,Gerardin-Otthiers, N. 1989. “Amino Acid Sequence of the Parvalbumin from the Very Fast Swimbladder Muscle of the Toadfish Opsanus tau.” Comp. Biochem. Physiol. 93B (1): 49–55.Google Scholar
  41. Gerday, C., and Teuwis, J.-C. 1972. “Isolation and Characterization of the Main Parvalbumins from Raja clavata and Raja montagui White Muscles.” Biochim. Biophys. Acta 271: 320–331.PubMedCrossRefGoogle Scholar
  42. German, J. B., and Berger, R. 1990. “Formation of 8, 15-Dihydroxy Eicosateraenoic Acid via 15-Lipoxygenase and 12-Lipoxygenase in Fish Gill. Lipids 25: 849–853.PubMedCrossRefGoogle Scholar
  43. German, J. B., and Crevling, R. K. 1990. “Identification and Characterization of a 15-Lipoxygenase from Fish Gills.” J. Agric. Food Chem. 38: 2144–2147.CrossRefGoogle Scholar
  44. Geromel, E. J., and Montgomery, M. W. 1980. “Lipase Release from Lysosomes of Rainbow Trout (Salmo Gairdneri) Muscle Subjected to Low Temperature.” J. Food Sci. 45: 412.CrossRefGoogle Scholar
  45. Ghiretti, F. 1956. “The Decomposition of Hydrogen Peroxide by Hemocyanin and by Its Dissociation Products.” Arch. Biochem. Phys. 63: 165–176.CrossRefGoogle Scholar
  46. Gildberg. A. 1988. “Aspartic Proteinases in Fishes and Aquatic Invertebrates.” Comp. Biochem. Physiol. 91B: 425–435.CrossRefGoogle Scholar
  47. Gildberg, A., and Raa, J. 1983. “Purification and Characterization of Pepsins from the Arctic Fish Capelin (Mallotus villosus). Comp. Biochem. Physiol. 75A:337–342.CrossRefGoogle Scholar
  48. Grandjean, J., Laszlo, P., and Gerday, C. 1977. “Sodium Complexation by the Calcium Binding Site of Parvalbumins.” FEBS Lett. 81: 376–380.PubMedCrossRefGoogle Scholar
  49. Groninger, H. S. 1964. “Partial Purification and Some Properties of a Proteinase from Albacore (Germo alalunga) Muscle.” Arch. Biochem. Biophys. 108: 175182.PubMedCrossRefGoogle Scholar
  50. Haard, N. F., Feltham, L. A. W., Helbig, N., and Squires, J. 1982. “Modification of Proteins with Enzymes from the Marine Environment.” Pp. 223244. In Modification of Proteins in Food, Pharmaceutical, and Nutritional Sciences, edited by R. Feeney and J. Whitaker. Advances in Chemistry Series 198. Washington, DC: American Chemical Society.Google Scholar
  51. Haard, N. F. 1990. “Enzymes from Food Myosystems.” J. Muscle Foods 1: 293338.CrossRefGoogle Scholar
  52. Haard, N. F. 1992. “Control of Chemical Composition and Food Quality Attributes of Cultured Fish.” Food Res. Internat. 25: 289–307.CrossRefGoogle Scholar
  53. Haard, N. F. 1992. “Protein Hydrolysis in Seafood.” In Proceedings World Food Congress,edited by F. Shahidi and J. R. Botta (in press).Google Scholar
  54. Haard, N. F. 1992. “Biochemical Reactions in Fish Muscle during Frozen Storage. Pp. 176–209. In Seafood Science and Technology, edited by E. G. Bligh. Cambridge, MA: Blackwell Scientific Publications.Google Scholar
  55. Haard, N. F. 1992. “Biochemistry and Chemistry of Color and Color Change in Seafoods.” Pp. 305–360. In Advances in Seafood Biochemistry, Composition and Quality, edited by G. J. Flick and R. E. Martin. Lancaster, PA: Technomic Publishing.Google Scholar
  56. Haard, N. F., and ARCILLA, R. 1985. “Precursors of Maillard Browning in Dehydrated Squid, Illex illecebrosus.” Can. Inst. Food Sci. Technol. J. 18: 326–331.CrossRefGoogle Scholar
  57. Hameed, K. S., and HAARD, N. F. 1985. “Isolation and Characterization of Cathepsin C from Atlantic Short Finned Squid, Illex illecebrosus.” Comp. Biochem. Physiol. 82B: 241–246.Google Scholar
  58. Han, T.J., and Liston, J. 1987. “Lipid Peroxidation and Phospholipid Hydrolysis in Fish Muscle Microsomes and Frozen Fish. J. Food Sci. 52: 294–296.CrossRefGoogle Scholar
  59. Hara, K., Suzumatsu, A., and Ishihara, T. 1988. “Purification and Characterization of Cathepsin B from Carp Ordinary Muscle.” Nippon Suisan Gakkaishi. 54: 1243–1252.CrossRefGoogle Scholar
  60. Hawkins, D. J., Brash, A. R. 1987. “Egg of the Sea Urchin, Stronglylocentrotus pururatus, Contain a Prominent (11R) and (12R) Lipoxygenase Activity.” J. Biol. Chem. 262: 762–768.Google Scholar
  61. Hebard, C. E., Flick, G. J., Martin, R. E. 1982. “Occurrence and Significance of Trimethylamine Oxide and Its Derivatives in Fish and Shellfish. Pp. 149–304. In Chemistry and Biochemistry of Marine Food Products, edited by R. E. Martin, G. J. Flick, C. E. Hebard, and D. R. Ward. New York: Van Nostrand Reinhold.Google Scholar
  62. Henry, T., and Ferguson, A. 1985. “Kinetic Studies on the Lactate Dehydrogenase (LDH-5) Isozymes of Brown Trout, Salmo trutta.” Comp. Biochem. Physiol. 82B: 95–98.Google Scholar
  63. Hjelmeland, K., Raa, J. 1982. “Characteristics of Two Trypsin Type Isozymes Isolated from the Arctic Fish Capelin (Mallotus villosus).” Comp. Biochem. Physiol. 71B: 557–562.CrossRefGoogle Scholar
  64. Hsieh, R. J., and Kinsella, J. E. 1986. “Lipoxygenase-Catalyzed Oxidation of N-6 and N-3 Polyunsaturated Fatty Acids: Relevance to the Activity in Fish Tissue.” J. Food Sci. 51: 940–945.CrossRefGoogle Scholar
  65. Ilgner, R. H., Woods, A. E. 1985. “Purification, Physical Properties and Kinetics of Peroxidases from Freshwater Crayfish (Genus orconectes).” Comp. Biochem. Physiol. 82B: 433–440.Google Scholar
  66. Inaba, T., Shindo, N., and Fuji, M. 1976. “Purification of Cathepsin B from Squid Liver.” Agric. Biol. Chem. 40: 1159–1165.Google Scholar
  67. Iwata, K., Kabashi, K.,Hase, J. 1973. “Studies on Muscle Alkaline Protease—I. Isolation, Purification and some Physicochemical Properties of an Alkaline Protease from Carp Muscle.” Bull. Japan. Soc. Sci. Fish. 39: 1325–1337.CrossRefGoogle Scholar
  68. Iwata, K., Kabashi, K., Hase, J. 1974. “Studies on Muscle Alkaline Protease—III. Distribution of Alkaline Protease in Muscle of Freshwater Fish, Marine Fish, and in Internal Organs of Carp.” Bull. Japan Soc. Sci. Fish. 40: 201–209.CrossRefGoogle Scholar
  69. Izquerdo-Pulido, M., Hatae, K.,Haard, N. F. 1992. “Nucleotide Catabo-lism and Changes in Texture During Ice Storage of Cultured Sturgeon, Acipenser transmontanus.” J. Food Biochem. 16: 173–192.CrossRefGoogle Scholar
  70. Jany, K. D. 1976. “Studies on the Digestive Enzymes of the Stomachless Bonefish Carassius auratus gibelio (Bloch): Endopeptidases.” Comp. Biochem. Physiol. 53B: 31–38.CrossRefGoogle Scholar
  71. Jiang, S. T., Tsao, C. Y., Wang, Y. T., and Chen, C. S. 1990. “Purification and Properties of Proteases from Milkfish Muscle (Chanos chanos).” J. Agric. Food Chem. 38: 1458–1463.CrossRefGoogle Scholar
  72. Josephson, D. B., and Lindsey, R. C. 1986. “Enzymic Generation of Fresh Fish Volatile Aroma Compounds.” P. 201. In Biogenesis of Aromas, edited by I. H. Parliment and R. Croteau. ACS Symposium No. 317. Washington, DC: American Chemical Society.Google Scholar
  73. Kalac, J. 1978. “Studies on Herring (Clupea harengus L) and Capelin (Mallotus villosus L) Pyloric Ceca Protease III. Characterization of the Anionic Fractions of Chymotrypsins.” Biologia (Brastislava) 33: 939–945.Google Scholar
  74. Kim, K., and Haard, N. F. 1992. “Degradation of Proteoglycans in the Skeletal Muscle of Pacific Rockfish (Sebastles sp.) During Ice Storage.” J. Muscle Foods 3: 103–121.CrossRefGoogle Scholar
  75. Kim, K.-H., and Tchen, T. T. 1962. “Tyrosinase of the Goldfish Carassius auratus L. I. Radio-assay and Properties of the Enzyme.” Biochim. Biophys. Acta 59: 569–576.PubMedCrossRefGoogle Scholar
  76. Kinoshita, M., Toyohara, H., and Shimizu, Y. 1990. “Diverse Distribution of Four Distinct Types of Modori (Gel Degradation)-Inducing Proteinases Among Fish Species.” Nippon Suisan Gakkaishi. 56: 1485–1492.CrossRefGoogle Scholar
  77. Kinsella, J. E., German, J. B., and Shetty, J. 1985. “Uricase from Fish Liver: Isolation and Some Properties.” Comp. Biochem. Physiol. 82B: 621–624.CrossRefGoogle Scholar
  78. Kishi, H., Nozawa, H., and Seki, N. 1991. “Reactivity of Muscle Transglutaminase on Carp Myofibrils and Myosin B.” Nippon Suisan Gakkaishi. 57: 1203 1210.CrossRefGoogle Scholar
  79. Kitamikado, M., and Tachino, S. 1960. “Studies on the Digestive Enzymes of Rainbow Trout—II. Proteases.” Bull. Japan Soc. Sci. Fish. 26: 685–694.CrossRefGoogle Scholar
  80. Kobuta, M., Ohnuma, A., and Karuse, I. 1970. “Kinetics of Protease Inactivation by Gamma Irradiation.” J. Tokyo Univ. Fish. 55 (1): 9–20.Google Scholar
  81. Konosu, S., Hamoir, G., and Pechere, J.-F. 1965. “Carp Myogens of White and Red Muscles: Properties and Amino Acid Composition of the Main Low Molecular Weight Components of White Muscle.” Biochem. J. 96: 98–112.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kuo, J.-M., and Pan, B. S. 1992. Occurrence and Properties of 12-Lipoxygenase in the Hamolymph of Shrimp (Penaeus japonicus Bate).“J. Chinese Biochem. Soc. 21 (1): 9–16.Google Scholar
  83. Lee, Y.-Z., Singh, R. P., and Haard, N. F. 1992. Changes in Freshness of Chili-pepper Rockfish (Sebastes goodei) During Storage Measured by Biochemical Biosensors. “ J. Food Biochem. 16: 119–129.CrossRefGoogle Scholar
  84. Leger, C. 1972. “Essai de purification de la lipase de tissu intercaecal de la truite (Salmo gairdneri Rich).” Ann. Biol. Biochim. Biophys. 12: 341–345.Google Scholar
  85. Lehky, P., Stein, E. A. 1979. “Perch Muscle Parvalbumin: General Characterization and Magnesium Binding Properties.” Comp. Biochem. Physiol. 63B: 253–259.CrossRefGoogle Scholar
  86. Lehrer, S. B., Daul, C. B. 1992. “Allergenic Reactions to Seafood: Identification of Allergens.” Pp. 185–197. In Advances in Seafood Biochemistry, Composition and Quality, edited by G. J. Flick and R. E. Martin. Lancaster, PA: Technomic Publication.Google Scholar
  87. Lehrer, S. B., Mccants, M. L. 1987. “Reactivity of IgE Antibodies with Crustacea and Oyster Allergens: Evidence for Common Antigenic Structures.”J. Allergy Clin. Immunol. 80: 133–139.PubMedCrossRefGoogle Scholar
  88. Love, R. M. 1980. The Chemical Biology of Fishes. Vol. 2, Pp. 277–278. New York: Academic Press.Google Scholar
  89. Love, R. M. 1988. The Food Fishes: Their Intrinsic Variation and Practical Implications. P. 59. London: Farrand Press.Google Scholar
  90. Low, P. S., Bada, J. L., and Somero, G. N. 1973. “Temperature Adaptation of Enzymes: Roles of Free Energy, the Enthalpy, and the Entropy of Activation.” Proc. Nat. Acad. Sci. 70: 430–432.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lundstrom, R. C., Correia, F. F., and Wilhelm, K. A. 1982. “Enzymatic Dimethylamine and Formaldehyde Production in Minced American Plaice and Blackback Flounder Mixed with Red Hake TMAO-ase Active Fraction. J. Food Sci. 47: 1305.CrossRefGoogle Scholar
  92. Lushchak, V. I. 1991. “Characteristics of Microsome-Bound Lactate Dehydrogenase from Skate White Muscles.” Biokhimiia 56 (12): 2173–2180.PubMedPubMedCentralGoogle Scholar
  93. Macdonald, R. E., and Hultin, H. O. 1987. “Some Characteristics of the Enzymic Lipid Peroxidation System in the Microsomal Fraction of Flounder Skeletal Muscle.” J. Food Sci. 52: 15–21.CrossRefGoogle Scholar
  94. Meijer, L., Brash, A. R., Bryant, R. W., NG, K., Maclouf, J., and Sprecher,H. 1986. “Stereospecific Induction of Starfish Oocyte Maturation by Hydroxyeicosatetraenoic Acid.” J. Biol. Chem. 261: 17040–17047.PubMedPubMedCentralGoogle Scholar
  95. Meijer, L., Maclouf, J., and Bryant, R. W. 1986. “Arachidonic Acid Metabolism in Starfish Oocytes.” Dev. Biol. 114: 22–33.CrossRefGoogle Scholar
  96. Merrett, T. G., Bar-Eli, E., and Vunakis, H. 1969. “Pepsinogens A, C, and D from the Smooth Dogfish.” Biochemistry 8: 3696–3702.PubMedCrossRefGoogle Scholar
  97. Mietz, J. L., and Karmas, E. 1977. “Chemical Quality Index for Canned Tuna as Determined by High Pressure Liquid Chromatography.” J. Food Sci. 42: 155–158.CrossRefGoogle Scholar
  98. Murakami, K., and Noda, M. 1981. “Studies on Proteinases from the Digestive Organs of Sardine I. Purification and Characterization of Three Alkaline Proteinases from the Pyloric Ceca.” Biochim. Biophys. Acta 658: 17–26.PubMedCrossRefGoogle Scholar
  99. Nimmo, I. A., and Spalding, C. M. 1985. The Glutathione S-Transferase Activity in the Kidney of Rainbow Trout (Salmo giardneri).“ Comp. Biochem. Physiol. 82B: 91–94.CrossRefGoogle Scholar
  100. Noda, M., and Murakami, K. 1981. “Studies on Proteinases from the Digestive Organs of Sardines II. Purification and Characterization of Two Acid Proteinases from the Stomach.” Biochim. Biophys. Acta 658: 27–34.PubMedCrossRefGoogle Scholar
  101. Norris, E. R., and Elam, D. W. 1940. “Preparation and Properties and Crystallization of Tuna Pepsin.” J. Biol. Chem. 204: 673–680.Google Scholar
  102. Numakura, T., Sekt, N., Kimura, I., Toyoda, K., Fujita, T., Takama, K., and Akai, K. 1985. “Cross-linking Reaction of Myosin in Fish Paste During Setting.” Nippon-Suisan Gakkaishi. 51: 1559–1565.CrossRefGoogle Scholar
  103. Olley, J. Ptrie, R., and Watson, H. 1962. “Lipase and Phospholipase Activity in Fish Skeletal Muscle and Its Relationship to Protein Denaturation.” J. Sci. Food Agric. 13: 501–516.CrossRefGoogle Scholar
  104. Owen, T. G., and Wiccs, A. J. 1971. “Thermal Compensation in the Stomach of the Brook Trout (Salvelinus fontinalis Mitchill).” Comp. Biochem. Physiol. 40B: 465–473.CrossRefGoogle Scholar
  105. Parkin, K. I., and Hultin, H. O. 1981. “A Membrane Fraction from Red Hake Muscle Catalyzing the Conversion of TMAO to Dimethylamine and Formaldehyde.” Sci. Technol. Refrig. 4–6: 475–481.Google Scholar
  106. Pechere, J.-F. 1977. “The Significance of Parvalbumins Among Muscle Calciproteins. Pp. 213–221. In Calcium-Binding Proteins and Calcium Function, edited by R. H. Wasserman. New York: North-Holland.Google Scholar
  107. Pechere, J.-F., Demaille, J.,and Capony, J. 1971. “Muscular Parvalbumins: Preparative and Analytical Methods of General Applicability.” Biochim. Biophys. Acta 236:391–408.CrossRefGoogle Scholar
  108. Piront, A., Hamoir, G., and Crocaert, R. 1968. “Proteinic Composition of the Low Ionic Strength Extracts of Tilapia macrochir Boulenger White Muscle.” Arch. Internat. Physiol. Biochem. 76: 1–25.Google Scholar
  109. Prota, G., Ortonne, J. P., Voulet, C., Khatchadourian, C., Nardi, G., and Palumbo, A. 1981. Occurrence and properties of tyrosinase in the ejected ink of cephalopods. Comp. Biochem. Physiol. 68B: 415–419.CrossRefGoogle Scholar
  110. Ramakrishna, M., Hultin, H. O., and Atallah, M. T. 1987. “A Comparison of Dogfish and Bovine Chymotrypsins in Relation to Protein Hydrolysis.” J. Food Sci. 52 (5): 1198–1202.CrossRefGoogle Scholar
  111. Rehbein, H., and Lessen, E. 1989. “Parvalbumin in Salmon and Trout Species.” Arch. Fisch. Wiss. 39 (2): 147–162.Google Scholar
  112. Ruano, A. R., Riano, J. L. A., Amil, M. R., and Santos, M. J. H. 1985. “Some Enzymatic Properties of NAD+-Dependent Glutamate Dehydrogenase of Mussel Hepatopancreas (Mytilus edulis)—Requirement of ADP.” Comp. Biochem. Physiol. 82B: 197–202.Google Scholar
  113. Sakaizumi, M. 1985. “Species-Specific Expression of Parvalbumins in the Genus Oryzias and its Related Species.” Comp. Biochem. Physiol. 80B: 499–505Google Scholar
  114. Sanchez-Chiang, L., and Ponce, O. 1981. “Gastricsinogens and Gastricsins from Merluccius gayi—Purification and Properties.” Comp. Biochem. Phys. 68B: 251–257.Google Scholar
  115. Savagaon, K. A., and Sreenivasan, A. 1975. “Purification and Properties of Latent and Isoenzymes of Phenoloxidase in Lobster (Panulirus homarus Linn).” Indian J. Biochem. Physiol. 12: 94–99.Google Scholar
  116. Schmitt, A., and Siebert, G. 1967. “Differentiation of Aliphatic Dipeptidases from Cod Muscle.” Z. Physiolog. Chemi 348: 1009–1016.CrossRefGoogle Scholar
  117. Schwimmer, S. 1981. Source Book of Food Enzymology. P. 498. New York: Van Nostrand Reinhold.Google Scholar
  118. Scott, E. M., and Harrington, J. P. 1990. “Comparative Studies of Catalase and Superoxide Dismutase Activity Within Salmon Erythrocytes.” Comp. Biochem. Physiol. 95B: 91–93.Google Scholar
  119. Sherekar, S. V., Gore, M. S., and Ninjoor, V. 1988. “Purification and Characterization of Cathepsin B from the Skeletal Muscles of Fresh Water Fish, Tilapia mossambica.” J. Food Sci. 53 (4): 1018–1023.CrossRefGoogle Scholar
  120. Shewfelt, R. L. 1981. “Fish Muscle Lipolysis—A Review.”J. Food Biochem. 5:79100.Google Scholar
  121. Shewfelt, R. L., Mcdonald, R. E., and Hultin, H. 0. 1981. “Effect of Phospholipid Hydrolysis on Lipid Oxidation in Flounder Muscle Microsomes.” J. Food Sci. 1297–1301.Google Scholar
  122. Siang, N. C., Kwang, L. H., and Chang, N. M. 1991. “Some Factors Influencing Gel Strength of Tropical Sardine (Sardinelle gibossa).” Pp. 236–249. In Proceeding of Seminar on Advances in Fishery Post-Harvest Technology in Southeast Asia, edited by H. K. Kuang and M. B. Salim.Google Scholar
  123. Siebert, G. 1962. “Enzymes in Marine Fish Muscle and Their Role in Fish Spoilage.” Pp. 80–82. In Fish in Nutrition, edited by E. Heen and R. Kreuzer. London: London Fishing News.Google Scholar
  124. Simpson, B. K., and Haard, N. F. 1984. “Trypsin from Greenland Cod Gadus ogac. Kinetic and Thermodynamic Characteristics.” Can. J. Biochem. Cell Biol. 62: 894–900.CrossRefGoogle Scholar
  125. Simpson, B. K., and Haard, N. F. 1987. “Cold-Adapted Enzymes from Fish.” Pp. 495–527. In Food Biotechnology, edited by D. Knorr. New York: Marcel Dekker.Google Scholar
  126. Simpson, B. K., and Haard, N. F. 1987. “Trypsin and Trypsin-like Enzymes from the Stomachless Cunner. Kinetic and Other Physical Properties. J. Agric. Food Chem. 35: 652–656.CrossRefGoogle Scholar
  127. Simpson, B. K., Marshall, M. R., and Otwell, W. S. 1988. “Phenoloxidases from Pink and White Shrimp: Kinetic and Other Properties.” J. Food Biochem. 12: 205–217.CrossRefGoogle Scholar
  128. Simpson, B. K., Smith, J. P., and Haard, N. F. 1991. “Marine Enzymes.” Pp. 1645–1653. In Encyclopedia of Food Science Technology. New York: Wiley.Google Scholar
  129. Simpson, M. V., and Haard, N. F. 1987. “Temperature Acclimation of Atlantic Cod, Gadus morhua, and Its Influence on Freezing Point and Biochemical Damage of Postmortem Muscle Stored at 0°C and -3°C.”J. Food Biochem. 11: 69–93.Google Scholar
  130. Slabyj, B. M., and Hultin, H. O. 1982. “Lipid Peroxidation by Microsomal Fractions Isolated from Light and Dark Muscles of Herring (Clupea harengus).” J. Food Sci. 47: 1395–1398.CrossRefGoogle Scholar
  131. Smith, D. M. 1991. “Factors Influencing Heat-Induced Gelation of Muscle Proteins.” Pp. 243–256. In Interactions of Food Proteins, edited by N. Parris and R. Barford, American Chemical Society Series 454. Washington DC: American Chemical Society.Google Scholar
  132. Somero, G. 1986. “From Dogfish to Dogs: Trimethylamines Protect Proteins from Urea.” NIPS 1:9–12.Google Scholar
  133. Squires, J., Haard, N. F., and Feltham, L. A. W. 1986. “Pepsin Isozymes from Greenland Cod, Gadus ogac. 1. Purification and Physical Properties.” Can. J. Biochem. Cell Biol. 65: 205–209.CrossRefGoogle Scholar
  134. Stirling, W. 1884. “On the Ferments or Enzymes of the Digestive Tract in Fishes.” J. Anat. Physiol. 18: 426–435.PubMedPubMedCentralGoogle Scholar
  135. Summers, N. M. 1967. “Cuticle Sclerotization and Blood Phenol Oxidase in the Fiddler Crab, Uca pugnax.” Comp. Biochem. Physiol. 23: 129–138.PubMedCrossRefGoogle Scholar
  136. Surette, E., Gill, T. A., and Leblanc, P. J. 1980. “Biochemical Basis of Nucleotide Catabolism, in Cod (Gadus morhua) and Its Relationship to Spoilage.” J. Agric. Food Chem. 36: 19–22.CrossRefGoogle Scholar
  137. Suzuki, T. 1981. Fish and Krill Protein Processing Technology. Pp. 10–13. London: Applied Science Publishers.CrossRefGoogle Scholar
  138. Tanji, M., Kageyama, T., and Takahashi, K. 1988. “Tuna Pepsinogens and Pepsins. Purification, Characterization and Amino Terminal Sequences.” Eur. J. Biochem. 177: 251–259.PubMedCrossRefGoogle Scholar
  139. Tappel, A. L., Sawant, P. L., and Shibko, S. 1963. Lysosomes: Distribution in animals, hydrolytic capacity and other properties. In Lysosomes, edited by D. Reuk and A. Cameron. Pp. 78–108. London: Churchill Ltd.Google Scholar
  140. Thebault, M. T., Bernicard, A., and Lennon, J. F. 1981. “Lactate Dehydrogenase from the Caudal Muscle of the Shrimp Palaemon serratus: Purification and Characterization.” Comp. Biochem. Physiol. 68B: 65–70.Google Scholar
  141. Ting, C-Y., Montgomery, M., and Anglemier, A. F. 1968. “Partial Purification of Salmon Muscle Cathepsins.”J. Food Sci. 33: 617–621.CrossRefGoogle Scholar
  142. Tokunaga, T. 1965. “Studies on the Development of Dimethylamine and Formaldehyde in Alaska Pollack. II. Factors Affecting the Formation of Dimethylamine and Formaldehyde.” Bull. Hokkaido Reg. Fish. Res. Lab. 30: 90.Google Scholar
  143. Toots, P. M., Ward, C. F., and Weber, J. R. 1982. “Identification of Fish Species by Isoelectric Focusing.” Pp. 51–65. In Chemistry and Biochemistry of Marine Food Products, edited by R. E. Martin, G. F. Flick, C. E. Hebard and D. R. Ward. New York: Van Nostrand Reinhold.Google Scholar
  144. Tsukuda, N. 1970. “Studies on the discoloration of red fishes. VI. Partial purification and specificity of the lipoxygenase-like enzyme responsible for carot-enoid discoloration in fish skin during refrigerated storage.” Nippon Suisan Gakkaishi, 36: 725–733.Google Scholar
  145. Ueno, R., Ikeda, S., Sakanaka, K., and Horiguchi, Y. 1988. “Characterization of Pepstatin Insensitive Protease in Mackerel Muscle.” Nippon Suisan Gakkaishi 54: 699–707.CrossRefGoogle Scholar
  146. Waite, J. H. 1985. “Catechol Oxidase (EC in the Bysus of the Common Carp Mytilus edulis.” J. Marine Biol. Assoc. U. K. 65: 359–371.CrossRefGoogle Scholar
  147. Warren, G. J., Mueller, G. M., and Mckown, R. L. 1992. “Ice Crystal Growth Suppression Polypeptides and Method of Making.” U. S. patent 5,118,792, June 2, 1992.Google Scholar
  148. Whitmore, D. H. 1986. “Identification of Sunfish Species by Muscle Protein Isoelectric Focusing.” Comp. Biochem. Physiol. 84B: 177–180.Google Scholar
  149. Wicks, M. A., and Morgan, R. P. 1976. “Effects of Salinity on Three Enzymes Involved in Amino Acid Metabolism from the American Oyster, Crassostrea virginica.” Comp. Biochem. Physiol. 53B: 339–343.Google Scholar
  150. Wiggs, A. J. 1974. “Seasonal Changes in the Thyroid Proteinase of a Teleost Fish, the Burbot, Lota iota L. Can. J. Zool. 52: 1071–1078.PubMedCrossRefGoogle Scholar
  151. Winkler, M., Pilhofer, G., and German, J. B. 1992. “Stereochemical Specificity of the N-9-Lipoxygenase of Fish Gill.” J. Food Biochem. 15: 437–448CrossRefGoogle Scholar
  152. Woychik, J. H., and Dower, H. J. 1990. “Characterization of Parvalbumins of Alaska and Atlantic Pollock and Gulf and Atlantic Menhaden.” IFT National Meeting. Anaheim, CA. Abstract No. 757. Chicago, IL: Institute of Food Technologists.Google Scholar
  153. Wright, J. L. C. 1992. “Shellfish Toxins: A Canadian Perspective.” Pp. 366375. In Seafood Science and Technology, edited by E. G. Bligh. Cambridge, MA: Blackwell Scientific Publications.Google Scholar
  154. Yamada, A., Takano, K., and Kamoi, I. 1991. “Purification and Properties of Amylases from Tilapia Intestine.” Nippon Suisan Gakkaishi. 57: 1903–1909.CrossRefGoogle Scholar
  155. Yamagata, M., Horimito, M., and Nagaoka, C. 1971. “Accuracy of Predicting Occurrence of Greening in Tuna Based on Content of Trimethylamine Oxide.” J. Food Sci. 36: 55–57.CrossRefGoogle Scholar
  156. Yoshinaka, R., Sato, M., and Ikeda, A. 1978. “Distribution of Collagenase in the Digestive Organs of Some Teleost Fish.” Bull. Japan. Soc. Sci. Fish. 40 (2): 263–268.CrossRefGoogle Scholar
  157. Yoshinaka, R., Sato, M., Suzuki, T., and Ikeda, S. 1984. “Enzymatic Characterization of Anionic Trypsin of the Catfish (Parasilurus asotus).” Comp. Biochem. Physiol. 77B: 1–6.CrossRefGoogle Scholar
  158. Zajicek, P. 1991. “Enzyme Polymorphism of Freshwater Trypanosomes and Its Use for Strain Identification.” Parasitology. 102: 221–224.PubMedCrossRefGoogle Scholar
  159. Zeef, A. H., and Dennison, C. 1988. “A Novel Cathepsin from the Mussel (Perna Perna) (Linne).” Comp. Biochem. Physiol. 90B: 210–204.Google Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • Norman F. Haard
  • Benjamin K. Simpson
  • Bonnie Sun Pan

There are no affiliations available

Personalised recommendations