Skip to main content

Translational Control in Prokaryotes

  • Chapter
Ribosomes

Part of the book series: Cellular Organelles ((CORG))

  • 206 Accesses

Abstract

Protein production in the cell can be controlled principally at three levels: (1) by production of mRNA (transcriptional level); (2) through availability of mRNA for translation and modulation of mRNA translation rate (translational level); and (3) by mRNA elimination (degradation). Although both transcription and mRNA degradation may also depend on ribosomes, only the translational level of protein synthesis regulation will be considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhin, M. R., and van Duin, J. (1989) Translational regulation of the lysis gene in RNA bacteriophage fr requires a UUG initiation codon, Mol. Gen. Genet. 218:137–142.

    Article  PubMed  CAS  Google Scholar 

  • Adhin, M. R., and van Duin, J. (1990) Scanning model for translational reinitiation in Eubacteria, J. Mol. Biol. 213:811–818.

    Article  PubMed  CAS  Google Scholar 

  • Aiba, H., Matsuyama, S.-L, Mizumo, T., and Mizushima, S. (1987) Function of micF as an antisense RNA in osmoregulatory expression of the ompF gene in Escherichia coli, J. Bacteriol. 169:3007–3012.

    PubMed  CAS  Google Scholar 

  • Bernardi, A. and Spahr, P. F. (1972) Nucleotide sequence at the binding site for coat protein on RNA of bacteriophage R17, Proc. Natl. Acad. Sci. USA 69:3033–3037.

    Article  PubMed  CAS  Google Scholar 

  • Brunei, C., Romby, P., Sacerdot, C., de Smit, M., Graffe, M., Dondon, J., van Duin, J., Ehresmann, B., Ehresmann, C., and Springer, M. (1995) Stabilised secondary structure at a ribosomal binding site enhances translational repression in E. coli, J. Mol. Biol. 253:277–290.

    Article  Google Scholar 

  • Das, A., and Yanofsky, C. (1984) A ribosome binding site sequence is necessary for efficient expression of the distal gene of a translationally-coupled gene pair, Nucl. Acids Res. 12:4757–4768.

    Article  PubMed  CAS  Google Scholar 

  • de Smit, M. H., and van Duin, J. (1990) Control of prokaryotic translational initiation by mRNA secondary structure, Progr. Nucleic Acid Res. Mol. Biol. 38:1–35.

    Article  Google Scholar 

  • Dean, D., and Nomura, M. (1980) Feedback regulation of ribosomal protein gene expression in Escherichia coli, Proc. Natl. Acad. Sci. USA 77:3590–3594.

    Article  PubMed  CAS  Google Scholar 

  • Dean, D., Yates, J. L., and Nomura, M. (1981a) Escherichia coli ribosomal protein S8 feedback regulates part of spc operon, Nature 289:89–91.

    Article  PubMed  CAS  Google Scholar 

  • Dean, D., Yates, J. L., and Nomura, M. (1981b) Identification of ribosomal protein S7 as a repressor of translation within the str operon of E. coli, Cell 24:413–419.

    Article  PubMed  CAS  Google Scholar 

  • Draper, D. E. (1987) Translational regulation of ribosomal proteins in Escherichia coli: Molecular mechanisms, in Translational Regulation of Gene Expression (J. Ilan, ed.), pp. 1–26, Plenum Press, New York and London.

    Chapter  Google Scholar 

  • Friesen, J. D., Fiil, N. P., Dennis, P. P., Downing, W. L., An, G., and Holowachuk, E. (1980) Biosynthetic regulation of rplJ, rolL, rpoB and rpoC in Escherichia coli, in Ribosomes: Structure, Function, and Genetics (G. Chamblis, G. R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds.), pp. 719–742, University Park Press, Baltimore.

    Google Scholar 

  • Gold, L. (1988) Posttranscriptional regulatory mechanisms in Escherichia coli, Annu. Rev. Biochem. 57:199–233.

    Article  PubMed  CAS  Google Scholar 

  • Gualerzi, C., la Teana, A., Spurio, R., Canonaco, M. A., Severini, M., and Pon, C. L. (1990) Initiation of protein biosynthesis in procaryotes: Recognition of mRNA by ribosomes and molecular basis for the function of initiation factors, in The Ribosome: Structure, Function, and Evolution (W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner, eds.), pp. 281–291, ASM Press, Washington, DC.

    Google Scholar 

  • Hellmuth, K., Rex, G., Surin, B., Zinck, R., and McCarthy, J. E. G. (1991) Translational coupling varying in efficiency between different pairs of genes in the central region of the atp operon of Escherichia coli, Mol. Microbiol. 5:813–824.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, M. (1988) Antisense RNA: its functions and applications in gene regulation—a review, Gene 72:25–34.

    Article  PubMed  CAS  Google Scholar 

  • Ivey-Hoyle, M., and Steege, D. A. (1989) Translation of phage f1 gene VII occurs from an inherently defective initiation site made functional by coupling, J. Mol. Biol. 208:233–244.

    Article  PubMed  CAS  Google Scholar 

  • Johnsen, M., Christensen, T., Dennis, P. P., and Fiil, N. P. (1982) Autogenous control: Ribosomal protein L10–L12 complex binds to the leader sequence of its mRNA, EMBO J. 1:999–1004.

    PubMed  CAS  Google Scholar 

  • Kolakofsky, D., and Weissmann, C. (1971) Possible mechanism for translation of viral RNA from polysome to replication complex, Nature New Biol. 231:42–46.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, L., and Zengel, J. (1982) Expression of ribosomal genes in bacteria, in Advances in Genetics (E. W. Caspari, ed.), vol. 21, pp. 53–111, Academic Press, New York.

    Google Scholar 

  • Lindahl, L., and Zengel, J. M. (1986) Ribosomal genes in Escherichia coli, Annu. Rev. Biochem. 20:297–326.

    CAS  Google Scholar 

  • Lodish, H. F., and Robertson, H. D. (1969) Regulation of in vivo translation of bacteriophage f2 RNA, Cold Spring Harbor Symp. Quant. Biol. 34:655–673.

    Article  PubMed  CAS  Google Scholar 

  • Lodish, H. F., and Zinder, N. D. (1966) Mutants of the bacteriophage f2. VIII. Control mechanisms for phage-specific syntheses, J. Mol. Biol. 19:333–348.

    Article  PubMed  CAS  Google Scholar 

  • Ma, C., and Simons, R. W. (1990) The IS10 antisense RNA blocks ribosome binding at the transposase translation initiation site, EMBO J. 9:1267–1274.

    PubMed  CAS  Google Scholar 

  • Malmgren, C., Engdahl, H. M., Romby, P., and Wagner, E. G. H. (1996) An antisense/target RNA duplex or a strong intramolecular RNA structure 5′ of a translation initiation signal blocks ribosome binding: The case of plasmid R1. RNA 2:1022–1032.

    PubMed  CAS  Google Scholar 

  • McCarthy, J. E. G. (1988) Expression of the unc genes in Escherichia coli, J. Bioenerg. Biomembr. 20:19–39.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, J. E. G. (1990) Post-transcriptional control in the polycistronic operon environment: studies of the atp operon of Escherichia coli, Mol. Microbiol. 4:1233–1240.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, J. E. G., and Brimacombe, R. (1994) Prokaryotic translation: the interactive pathway leading to initiation, Trends Genet. 10:402–407.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, J. E. G., and Gualerzi, C. (1990) Translational control of prokaryotic gene expression, Trends Genet 6:78–85.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, F., Weber, H., and Weissmann, C. (1981) Interactions of Qβ replicase with Qβ RNA, J. Mol. Biol. 153:631–660.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, T., Chou, M.-Y., and Inouye, M. (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA), Proc. Natl. Acad. Sci. USA 81:1966–1970.

    Article  PubMed  CAS  Google Scholar 

  • Moine, H., Romby, P., Springer, M., Grunberg—Manago, M., Ebel, J. P., Ehresmann, C., and Ehresmann, B. (1988) Messenger RNA structure and gene regulation at the translational level in Escherichia coli: The case of threonine:tRNAThe ligase, Proc. Natl. Acad. Sci. USA 85:7892–7896.

    Article  PubMed  CAS  Google Scholar 

  • Moine, H., Romby, P., Springer, M., Grunberg-Manago, M., Ebel, J.-P, Ehresmann, B., and Ehresmann, C. (1990) Escherichia coli threonyl-tRNA synthetase and tRNAThr modulate the binding of the ribosome to the translational initiation site of the ThrS mRNA, J. Mol. Biol. 216:299–310.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, M., Gourse, R., and Baughman, G. (1984) Regulation of the synthesis of ribosomes and ribosomal components, Annu. Rev. Biochem. 53:75–117.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, M., Jinks-Robertson, S., and Miura, A. (1982) Regulation of ribosome biosynthesis in Escherichia coli, in Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression (M. Grunberg-Manago and B. Safer, eds.), pp. 91–104, Elsevier, New York.

    Chapter  Google Scholar 

  • Nomura, M., Yates, J. L., Dean, D., and Post, L. E. (1980) Feedback regulation of ribosomal protein gene expression in Escherichia coli: Structural homology of ribosomal RNA and ribosomal protein mRNA, Proc. Natl. Acad. Sci. USA 77:7084–7088.

    Article  PubMed  CAS  Google Scholar 

  • Olins, P. O., and Nomura, M. (1981) Translational regulation by ribosomal protein S8 in Escherichia coli: Structural homology between rRNA binding site and feedback target on mRNA, Nucl. Acids Res. 9:1757–1764.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, D. S., and Yanofsky, C. (1980) Translational coupling during expression of the tryptophan operon of Escherichia coli, Genetics 95:785–795.

    PubMed  CAS  Google Scholar 

  • Petersen, C. (1989) Long-range translational coupling in the rplJL-rpoBC operon of Escherichia coli, J. Mol. Biol. 206:323–332.

    Article  PubMed  CAS  Google Scholar 

  • Platt, T., and Yanofsky, C. (1975) An intercistronic region and ribosome-binding site in bacterial messenger RNA, Proc. Natl. Acad. Sci. USA 72:2399–2403.

    Article  PubMed  CAS  Google Scholar 

  • Portier, C., and Grunberg-Manago, M. (1993) Regulation of ribosomal protein mRNA translation in bacteria: The case of S15, in Translational regulation of gene expression 2 (J. Ilan, ed.), pp. 23–47, Plenum Press, New York, London.

    Chapter  Google Scholar 

  • Robertson, H. D., and Lodish, H. F. (1970) Messenger characteristics of nascent bacteriophage RNA, Proc. Natl. Acad. Sci. USA 67:710–716.

    Article  PubMed  CAS  Google Scholar 

  • Sarabhai, A., and Brenner, S. (1967) A mutant which reinitiates the polypeptide chain after chain termination, J. Mol. Biol. 27:145–162.

    Article  PubMed  CAS  Google Scholar 

  • Schumperli, D., McKenney, K., Sobieski, D. A., and Rosenberg, M. (1982) Translational coupling at an intercistronic boundary of the Escherichia coli galactose operon, Cell 30:865–871.

    Article  PubMed  CAS  Google Scholar 

  • Simons, R. W., and Kleckner, N. (1983) Translational control of IS10 transposon, Cell 34:683–691.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M., and Grunberg-Manago, M. (1987) Escherichia coli threonyl-transfer RNA synthetase as a model system to study translational autoregulation in prokaryotes, in Translational Regulation of Gene Expression (J. Ilan, ed.), pp. 51–61, Plenum Press, New York, London.

    Chapter  Google Scholar 

  • Steitz, J. A. (1980) RNA·RNA interactions during polypeptide chain initiation, in Ribosomes: Structure, Function, and Genetics (G. Chambliss, G. R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds.), pp. 479–495, University Park Press, Baltimore.

    Google Scholar 

  • Stormo, G. D. (1986) Translation initiation, in Maximizing Gene Expression (W. Reznikoff and L. Gold, eds.), pp. 195–224, Butterworths, Boston, London.

    Google Scholar 

  • Stormo, G. D. (1987) Translational regulation of bacteriophages, in Translational Regulation of Gene Expression (J. Ilan, ed.), pp. 27–49, Plenum Press, New York, London.

    Chapter  Google Scholar 

  • Voorma, H. O. (1996) Control of translation initiation in prokaryotes, in Translational Control (J. W. B. Hershey, M. B. Mathews, and N. Sonenberg, eds.), pp. 759–777, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Wagner, E. J., and Simons, R. W. (1994) Antisense RNA control in bacteria, phages, and plasmids, Annu. Rev. Microbiol. 48:713–742.

    Article  PubMed  CAS  Google Scholar 

  • Weber, H., Billeter, M. A., Kahane, S., Weissmann, C., Hindley, J., and Porter, A. (1972) Molecular basis for repressor activity of Qβ replicase, Nature New Biol. 237:166–169.

    Article  PubMed  CAS  Google Scholar 

  • Weissmann, C., Billeter, M. A., Goodman, H. M., Hindley, J., and Weber, H. (1973) Structure and function of phage RNA, Annu. Rev. Biochem. 42:303–328.

    Article  PubMed  CAS  Google Scholar 

  • Yates, J. L., Dean, D., Strycharz, W. A., and Nomura, M. (1981) E. coli ribosomal protein L10 inhibits translation of L10 and L7/L12 mRNAs by acting at a single site, Nature 294:190–192.

    Article  PubMed  CAS  Google Scholar 

  • Yates, J. L., and Nomura, M. (1980) E.coli ribosomal protein L4 is a feedback regulatory protein, Cell 21:517–522.

    Article  PubMed  CAS  Google Scholar 

  • Yates, J. L., and Nomura, M. (1981) Feedback regulation of ribosomal protein synthesis in E. coli: Localization of the mRNA target sites for repressor action of ribosomal protein L1, Cell 24:243–249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Spirin, A.S. (1999). Translational Control in Prokaryotes. In: Ribosomes. Cellular Organelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7817-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7817-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46146-0

  • Online ISBN: 978-1-4615-7817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics