Skip to main content

Theory of a Weakly Turbulent Plasma

  • Chapter
Reviews of Plasma Physics

Abstract

A characteristic feature of a plasma is the existence of a spectrum of collective oscillations or plasma waves (plasmons). The frequency and velocity of propagation of these waves are determined by the wave vector and by the gross parameters of the plasma such as the density, the mean velocity spread, the magnetic field, etc., and this situation is a reflection of the fact that all of the particles in the plasma are involved in the plasma oscillations. The situation is different, however, when one examines the damping (or growth) of the oscillations. Damping (growth) is determined by the “fine details” of the particle distribution in phase space, for example, by the derivative of the velocity distribution function; this situation reflects the specific role played by resonance particles (i.e., particles for which the following condition is satisfied: ω k kv = nωn; n = 0, 1, 2, …; here, ω k and k are the frequency and wave vector that characterize the wave, v is the particle velocity, and ωH = eH/mc). These particles are capable of exchanging energy with the waves and can thus amplify or damp it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Landau, ZhÉTF (J. Exptl. Theoret. Phys. USSR) 16, 25 (1946).

    Google Scholar 

  2. A. A. Vlasov, Many-Particle Theory, Gostekhizdat, Moscow, 1950.

    Google Scholar 

  3. N. N. Bogolyubov, Dynamical Problems in Statistical Physics, Gostekhizdat, Moscow, 1946.

    Google Scholar 

  4. Vedenov, Velikhov, and Sagdeev, Usp. Fiz. Nauk 73, 701 (1961), Soviet Phys. Uspekhi 4, 332 (1962).

    Google Scholar 

  5. Propagation of Waves in a Plasma (Russian translation), Problems of Contemporary Physics, Gostekhizdat, Moscow, 1952.

    Google Scholar 

  6. L. D. Landau, ZhÉTF (J. Exptl. Theoret. Phys. USSR) 7, 203 (1937).

    Google Scholar 

  7. B. I. Dabydov, Plasma Physics and the Problem of Controlled Thermonuclear Reactions (translated from the Russian), Pergamon Press, New York, 1959, Vol. I.

    Google Scholar 

  8. F. E. Low, Proc. Roy. Soc. A248, 282 (1958).

    MathSciNet  ADS  Google Scholar 

  9. Yu. F. Romanov and G. Filippov, ZhÉTF 40, 123 (1961). Soviet Phys. JETP 13, 87 (1961).

    Google Scholar 

  10. J. E. Drummond ed., Plasma Physics, McGraw-Hill, New York, 1960.

    Google Scholar 

  11. D. Pines and R. Schrieffer, Phys. Rev. 125, 804 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. O. V. Konstantinov and V. I. Perel’ ZhÉTF 39, 861 (1960), Soviet Phys. JETP 12, 597 (1961).

    MathSciNet  Google Scholar 

  13. Vedenov, Velikhov, and Sagdeev, Nucl. Fusion 1, 82 (1961).

    Article  Google Scholar 

  14. Vedenov, Velikhov, and Sagdeev, Nuclear Fusion, Supplement, 1962, Part 2, p. 465.

    Google Scholar 

  15. A. A. Vedenov, Atomnaya énergiya 13, 5 (1962), Atomic Energy 13, 591 (1963).

    Google Scholar 

  16. I. F. Kharchenko et. al., 1st International Conference on Plasma Physics and Controlled Thermonuclear Research, Salzburg, 1961.

    Google Scholar 

  17. A. A. Vedenov and A. I. Larkin, ZhÉTF 36, 1133 (1959), Soviet Phys. JETP 9, 806 (1959).

    MathSciNet  Google Scholar 

  18. W. E. Drummond and D. Pines, Nuclear Fusion, Supplement, 1962, Part 3, p. 1049.

    Google Scholar 

  19. A. A. Vedenov and E. P. Velikhov, ZhÉTF 43, 963 (1962), Soviet Phys. JETP 16, 682 (1963).

    Google Scholar 

  20. A. A. Vedenov, DAN 147, 334 (1962), Soviet Phys. Doklady 7, 100 (1963).

    Google Scholar 

  21. L. H. Putnam et al., Phys. Rev. Letters 7, 77 (1961).

    Article  ADS  Google Scholar 

  22. A. A. Vedenov and E. P. Velikhov, DAN 146, 65 (1962), Soviet Phys. Doklady 7, 801 (1963).

    Google Scholar 

  23. E. K. Zavoiskii, Atomnaya énergiya 14, 57 (1963), Atomic Energy 14, 5 (1963).

    Google Scholar 

  24. A. B. Mikhailovskii, Reviews of Plasma Physics (translated from the Russian), Consultants Bureau, New York, 1967, Vol. 3.

    Google Scholar 

  25. C. Etievant and M. Perulli, Compt. Rend. 255, 855 (1962).

    Google Scholar 

  26. K. Matsura and K. Ogawa, Progr. Theoret. Phys. (Japan) 28, 946 (1962).

    Article  ADS  Google Scholar 

  27. Camac et al., Nuclear Fusion, Supplement, 1962, Part 2, p. 423.

    Google Scholar 

  28. A. A. Galeev and V. I. Karpman, ZhÉTF 44, 592 (1963), Soviet Phys. JETP 17, 403 (1963).

    Google Scholar 

Download references

Authors

Editor information

M. A. Leontovich

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Consultants Bureau

About this chapter

Cite this chapter

Vedenov, A.A. (1967). Theory of a Weakly Turbulent Plasma. In: Leontovich, M.A. (eds) Reviews of Plasma Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7799-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7799-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7801-7

  • Online ISBN: 978-1-4615-7799-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics