Skip to main content

Molecular Markers for Linkage of Genetic Loci Contributing to Alcoholism

  • Chapter
Recent Developments in Alcoholism

Abstract

Specific locus and random locus linkage approaches to identify markers for genes whose allelic variants predispose to alcoholism or for genes controlling relevant physiological and behavioral phenotypes are discussed. Sib-pair analysis is superior for the direct analysis of complex genetic traits such as alcoholism, but classic family analysis will be useful for transmission and linkage analysis for marker traits whose genetics is less complex. In mice, a large number of inbred strains, recombinant inbred and congenic strains, and specifically selected outbred strains are available. In the human, an intriguing linkage result has emerged between a brain protein variant and alcoholism accompanied by suicide. In the mouse, preliminary linkages have been established to loci controlling ethanol preference and also activation after ethanol. Large panels of random DNA and protein genetic probes and of probes for specific loci will in the future increase the probability of establishing linkage in both species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cotton N: The familial incidence of alcoholism.J Stud Alcohol 40:89–116, 1979.

    PubMed  CAS  Google Scholar 

  2. Crabbe JC, Kosobud A, Young ER, Janowsky JS: Polygenic and single-gene determination of responses to ethanol in BXD/Ty recombinant inbred mouse strains. Neurobehav Toxicol Teratol 5:181–187, 1983.

    PubMed  CAS  Google Scholar 

  3. Schuckit MA: Self-rating alcohol intoxication by young men with and without family histories of alcoholism.J Stud Alcohol 41:242–249, 1980.

    PubMed  CAS  Google Scholar 

  4. Schuckit MA: Subjective responses to alcohol in sons of alcoholics and controls. Arch Gen Psychiatry 41:879–884, 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Propping P, Kruger J, Mark N: Genetic predisposition to alcoholism. An EEG study in alcoholics and relatives. Hum Gent 59:51–59, 1981.

    Article  CAS  Google Scholar 

  6. Propping P, Kruger J, Janah A: Effect of alcohol on genetically determined variants of the normal EEG. Psychiatry Res 2:85–90, 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Begleiter H, Porjesz B, Bihari B, Kissin B: Event-related brain potentials in boys at risk for alcoholism. Science 227:1493–1496, 1984.

    Article  Google Scholar 

  8. Schuckit MA: Genetic and clinical implications of alcohol and affective disorder. Am J Psychiatry 143:140–147, 1986.

    PubMed  CAS  Google Scholar 

  9. Cloninger CR, Bohman M, Sigvardsson S, Von Knorring A-L: Psychopathology in adoptedout children of alcoholics, in Galanter M (ed): Recent Developments in Alcoholism. Vol. 1. New York, Plenum Press, 1984, pp 37–51.

    Google Scholar 

  10. Radouco-Thomas S, Garcin F, Murthy MRV, Faure N, Lemay A, Forest JC, Radouco-Thomas C: Biological markers in major psychosis and alcoholism-phenotypic and genetic markers.J Psychiatr Res 18:513–539, 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Orkin SH, Markham AF, Kazazian HH: Direct detection of the common Mediterranean B-thalassemia gene with synthetic DNA probes.J Clin Invest 71:775–779, 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N: Enzymatic amplification of B-globin genomic sequence and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354, 1985.

    Article  PubMed  CAS  Google Scholar 

  13. Jeffreys AJ, Brookfield JFY, Semeonoff R: Positive identification of an immigration test-case using human DNA fingerprints. Nature 317:818–819, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Leary JJ, Brigati DJ, Ward DC: Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proc Natl Acad Sci USA 80:4045–4049.

    Google Scholar 

  15. O’Farrell PH: High resolution two-dimensional electrophoresis of proteins.J Biol Chem 250:4007–4021, 1975.

    PubMed  Google Scholar 

  16. Steinberg RA, O’Farrell PH, Friedrich U, Coffino P: Mutations causing charge alterations in regulatory subunits of the cAMP-dependent protein kinase of cultured S49 mouse lymphoma cells. Cell 10:381–391, 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Goldman D, Goldin LG, Rathnagiri P, O’Brien S, Merril CR: Twenty-seven protein polymorphisms by two-dimensional electrophoresis of serum, erythrocytes and fibroblasts in two pedigrees. Am J Hum Genet 37:898–911, 1985.

    PubMed  CAS  Google Scholar 

  18. Goldman D, Pikus HJ: Fourteen genetically variant proteins of mouse brain: Discovery of two new variants and chromosomal mapping of four loci. Biochem Genet 24:183–194, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Elliot RW: Use of two-dimensional electrophoresis to identify and map new mouse genes. Genetics 91:295, 1979.

    Google Scholar 

  20. Racine RR, Langley CH: Genetic analysis of protein variations in Mus musculus using two-dimensional electrophoresis. Biochem Genet 18:185–197, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Comings DE, Pekkula-Flagan A: Two-dimensional electrophoresis of human brain proteins. V. Non-equilibrium gel electrophoresis, with detection of a myelin basic protein mutation-MBL Duarte. Clin Chem 28:813–818, 1982.

    PubMed  CAS  Google Scholar 

  22. Comings DE: Pc 1 Duarte, a common polymorphism of a human brain protein, and its relationship to depressive disease and multiple sclerosis. Nature 277:28–32, 1977.

    Article  Google Scholar 

  23. Comings DE: Two-dimensional electrophoresis of human brain proteins. IV. Disorders of glial proliferation and a polymorphism of glial fibrillary acidic protein-GFAP Duarte. Clin Chem 28:805–812, 1982.

    PubMed  CAS  Google Scholar 

  24. Heydorn WE, Creed GJ, Marangos PJ and Jacobowitz DM: Identification of neuron-specific enolase and nonneuronal enolase in human and rat brain on two-dimensional Polyacrylamide gels.J Neurochem 44:201–209, 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Heydorn WE, Creed GJ, Wada H, Jacobowitz DM: Immunological evidence for existence of two subforms of soluble glutamic oxalacetic transaminase (sGOT) in human and rat brain. Neurochem Int 100, 7:833–841, 1985.

    Article  Google Scholar 

  26. Botstein D, White RL, Skolnick M, Davis RW: Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331, 1980.

    PubMed  CAS  Google Scholar 

  27. Morton NE: Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318, 1955.

    PubMed  CAS  Google Scholar 

  28. Morton LA, Kidd KK: The effects of variable age of onset and diagnostic criteria on the estimates of linkage. An example using manic-depressive illness and color blindness. Social Biol 27:1–10, 1980.

    CAS  Google Scholar 

  29. Kruger SD, Turner WJ, Kidd KK: The effects of requisite assumptions on linkage analyses of manic-depressive illness with HLA. Biol Psychiatry 17:1081–1099, 1982.

    PubMed  CAS  Google Scholar 

  30. Clerget-Darpoux F: Bias of the estimated recombination fraction and lod score due to an association between disease gene and marker gene. Ann Hum Genet 46:363–372, 1982.

    Article  PubMed  CAS  Google Scholar 

  31. Fishman PM, Suarez B, Hodge SE, Reich T: A robust method for the detection of linkage in familial disease. Am J Hum Genet 30:308–321, 1978.

    PubMed  CAS  Google Scholar 

  32. Cudworth AG, Woodrow JC: Evidence for HLA-linked genes in “juvenile” diabetes mellitus. Br Med J 3:133–135, 1975.

    Article  PubMed  CAS  Google Scholar 

  33. Suarez BK, O’Rourke D, Van Eerdewegh P: Power of the affected-sib-pair method to detect disease susceptibility loci of small effect: An application to multiple sclerosis. Am J Med Genet 12:309–326, 1982.

    Article  PubMed  CAS  Google Scholar 

  34. Thomson G: A review of theoretical aspects of HLA and disease associations. Theoretical Population Biol 20:168–208, 1980.

    Article  Google Scholar 

  35. Kan YW and Dozy AM: Polymorphism of DNA sequence adjacent to human B-globin structural gene: Relationship to sickle mutation. Proc Natl Acad Sci USA 75:5631–5635, 1978.

    Article  PubMed  CAS  Google Scholar 

  36. Hill SY, Goodwin DW, Cadoret R, et al: Association and linkage between alcoholism and eleven serological markers.J Stud Alcohol 36:981–992, 1975.

    PubMed  CAS  Google Scholar 

  37. Saunders, JB, Wodak AD, Haines A, Powell-Jackson PR, Portmann B, Davis M, Williams R: Accelerated development of alcoholic cirrhosis in patients with HLA-B8. Lancet 1:1381–1384, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Cruz-Coke R and Varela A: Inheritance of alcoholism. Its association with color blindness. Lancet 2: 1282, 1966.

    Article  PubMed  CAS  Google Scholar 

  39. Kaij L, Dock ML: Grandsons of alcoholics: A test of sex-linked transmission of alcohol abuse. Arch Gen Psychiatry 32:1379–1381, 1975.

    Article  PubMed  CAS  Google Scholar 

  40. Melendez M, Vargas-Tank L, Fuentes C, Armas-Merino R, Castillo D, Wolff C, Wegmann ME, Soto J: Distribution of HLA histocompatibility antigens, ABO blood groups and Rh antigens in alcoholic liver disease. Gut 20:288–290, 1979.

    Article  PubMed  CAS  Google Scholar 

  41. Bell H, Nordhagen R: HLA antigens in alcoholics with special reference to alcoholic cirrhosis. Scand J Gastroenterol 15:453–456, 1980.

    Article  PubMed  CAS  Google Scholar 

  42. Ingram DK, Corfman TP: An overview of neurobiological comparisons in mouse strains. Neurosci Biobehav Rev 4:421–435, 1980.

    Article  PubMed  CAS  Google Scholar 

  43. Oliverio A, Eleftheriou BE: Motor activity and ethanol: Genetic analysis in the mouse. Physiol Behav 16:577–581, 1976.

    Article  PubMed  CAS  Google Scholar 

  44. Bailey, DW: Recombinant-inbred strains: An aid to finding identity, linkage and function of histocompatibility and other genes. Transplant 11:325–327, 1971.

    Article  CAS  Google Scholar 

  45. Taylor, BA: Recombinant inbred strains: Use in gene mapping, in Morse HC III (ed): Origins of Inbred Mice. New York, Academic Press, 1978, pp 423–438.

    Google Scholar 

  46. Silver J: Confidence limits for estimates of gene linkage based on analysis of recombinant inbred strains.J Hered, 76:436–440, 1985.

    PubMed  CAS  Google Scholar 

  47. Oliverio A, Eleftheriou BE, Bailey DW: Exploratory activity: Genetic analysis of its modification by scopolamine and amphetamine. Physiol Behav 10:893–899, 1973.

    Article  PubMed  CAS  Google Scholar 

  48. Fuller JL, Collins RL: Ethanol consumption and preference in mice: A genetic analysis. Ann NY Acad Sci 197:42–48, 1972.

    Article  PubMed  CAS  Google Scholar 

  49. Goldman D, Crabbe J: Use of chromosomally mapped and identified mouse brain proteins for behavioral genetic analysis of alcoholism. Prog Neuro-Psychopharmacol Biol Psychiatry 10:177–189, 1986.

    Article  CAS  Google Scholar 

  50. McClearn GE: The use of strain rank-orders in assessing equivalence of technique. Behav Meth Res Instrum 1:49–51, 1968.

    Article  Google Scholar 

  51. Anderson SM, McClearn GE: Ethanol consumption: Selective breeding in mice. Behav Genet 11:291–301, 1981.

    Article  PubMed  CAS  Google Scholar 

  52. Goldman D, Nelson R, Deitrich RA, Baker RC, Spuhler K, Markley H, Ebert M, Merril CR: Genetic brain polypeptide variants in mouse strains with high and low sensitivity to alcohol. Brain Res 341:130–138, 1985.

    Article  PubMed  CAS  Google Scholar 

  53. McClearn GE: Kakihana R: Selective breeding for ethanol sensitivity: short sleep and long-sleep mice, in McClearn GE, Deitrich RA, Erwin VG (eds): Development of Animal Models as Pharmacogenetic Tools (US Dept of Health and Human Services Research Monograph-6, Publication No. (ADM) 81–1133), 1981, pp 147–159.

    Google Scholar 

  54. Heston WDW, Erwin VG, Anderson SM, Robbins H: A comparison of the effects of ethanol on mice selectively bred for differences in ethanol sleep-time. Life Sci 14:365–370, 1974.

    Article  PubMed  CAS  Google Scholar 

  55. Gilliam DM, Collins AC: Circadian and genetic effects on ethanol elimination in LS and SS mice. Alcoholism: Clin Exp Res 6:344–348, 1982.

    Article  CAS  Google Scholar 

  56. Basile A, Hoffer B, Dunwiddie T: Differential sensitivity of cerebellar Purkinje neurons to ethanol in selectively outbred lines of mice: Maintenance in vitro independent of synaptic transmission. Brain Res 264:69–78, 1983.

    Article  PubMed  CAS  Google Scholar 

  57. Sorenson S, Palmer M, Dunwiddie T, Hoffer B: Electrophysiological correlates of ethanol-induced sedation in differentially sensitive lines of mice. Science 210:1143–1145, 1980.

    Article  Google Scholar 

  58. Spuhler K, Hoffer B, Weiner N, Palmer M: Evidence for genetic correlation of hypnotic effects and cerebellar Purkinje cell depression in response to ethanol in mice. Pharmacol Biochem Behav 17:569–578, 1982.

    Article  PubMed  CAS  Google Scholar 

  59. Goldstein DB: Inherited differences in intensity of alcohol withdrawal reactions in mice. Nature 245:154–156, 1973.

    Article  PubMed  CAS  Google Scholar 

  60. Allen DL, Petersen DR, Wilson JR, McClearn GE, Nishimoto TK: Selective breeding for multivariate index of ethanol dependence in mice: results from the first five generations. Alcoholism: Clin Exp Res 7:443–447, 1983.

    Article  CAS  Google Scholar 

  61. McClearn GE, Wilson JR, Pekison DR, Allen DL: Selective bredding in mice for severity of the ethanol withdrawal syndrome. Substance Alcohol Actions/Misuse 3:135–143, 1982.

    CAS  Google Scholar 

  62. Crabbe JC, Kosobud A, Young ER, Tarn BR, McSwigan JD: Bidirectional selection for susceptibility to ethanol withdrawal seizures in Mus musculus. Behav Genet 15:521–536, 1985.

    Article  PubMed  CAS  Google Scholar 

  63. Schuckit, MA, Shaskan E, Duby J: Platelet MAO activities in relatives of alcoholics. Arch Gen Psychiatry 39:137–140, 1982.

    Article  PubMed  CAS  Google Scholar 

  64. Scher KJ: Platelet monoamine oxidase activity in relatives of alcoholics. Arch Gen Psychiatry 40:466, 1983.

    Article  Google Scholar 

  65. Asberg M, Traskman L, Thoren P: 5-HIAA in the cerebrospinal fluid: A biochemical suicide predictor? Arch Gen Psychiatry 3:1193–1197, 1976.

    Article  Google Scholar 

  66. Brown GL, Goodwin FK, Ballenger JC, Minichiello MD, Ebert MH, Major LF: Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1:131–139, 1979.

    Article  PubMed  CAS  Google Scholar 

  67. Linnoila M, Virkunnen M, Sheinen M, Nuutila A, Rimon R, Goodwin FK: Low cerebrospinal fluid 5-hydroxyindoleacetic acid differentiates impulsive from nonimpulsive violent behavior. Life Sci 33:2609–2614.

    Google Scholar 

  68. Kaij L: Biases in a Swedish social register of alcoholics. Social Psychiatry 5:216–218, 1970.

    Article  Google Scholar 

  69. Bohman M: Some aspects of alcoholism and criminality: A population of adoptees. Arch Gen Psychiatry 35:269–276, 1978.

    Article  PubMed  CAS  Google Scholar 

  70. Bohman M, Sigvardsson S, Cloninger R: Maternal inheritance of alcohol abuse. Arch Gen Psychiatry 38:965–969, 1981.

    Article  PubMed  CAS  Google Scholar 

  71. Cloninger CR, Bohman M, Sigvardsson S: Inheritance of alcohol abuse. Arch Gen Psychiatry 38:861–868, 1981.

    Article  PubMed  CAS  Google Scholar 

  72. Roy A, Virkkunen M, Guthrie S, Poland P, Linnoila M: Monoamines, glucose metabolism, suicidal and aggressive behaviors. Psychopharmacol Bull, 22:661, 1986.

    PubMed  CAS  Google Scholar 

  73. Knapp S, Mandell AJ, Russo PV, Vitto A, Stewart KD: Strain differences in kinetic and thermal stability of two mouse brain tryptophan hydroxylase activities. Brain Res 230:317–336, 1981.

    Article  PubMed  CAS  Google Scholar 

  74. Sullivan JL, Cavenar JO Jr, Maltbie AA, et al: Familial biochemical and clinical correlates of alcoholics with low platelet monoamine oxidase activity. Biol Psychiatry 14:385–394, 1979.

    PubMed  CAS  Google Scholar 

  75. Alexopoulos GS, Lieberman KW, Frances RJ: Platelet MAO activity in alcoholic patients and their first-degree relatives. Am J Psychiatry 140:1501–1505, 1983.

    PubMed  CAS  Google Scholar 

  76. Bonetti EP, Burkard WP, Gabi M, Mohler H: The partial inverse benzodiazepine agonist Ro 15–4513 antagonizes acute ethanol effects in mice and rats. Br J Pharmacol Abstr (Suppl)86:20P, 1985.

    Google Scholar 

  77. . Polc P: Interactions of partial inverse benzodiazepine agonists Ro 15–4513 and FG 7142 with ethanol in rats and cats. Br J Pharmacol (Suppl)86:465P, 1985.

    Google Scholar 

  78. Belknap JK, MacInnes JW, McClearn GE: Ethanol sleep times and hepatic alcohol and aldehyde dehydrogenase activities in mice. Physiol Behav 9:453–457, 1972.

    Article  PubMed  CAS  Google Scholar 

  79. McClearn GE, Wilson JR, Meredith W: The use of isogenic and heterogenic mouse stocks in behavioral research, in Lindsey G, Thiessen DD (eds): Contributions to Behavior-Genetic AnalysisThe Mouse as a Prototype. New York, Appleton-Century-Crofts, 1970, pp 3–22.

    Google Scholar 

  80. Harada S, Agarwal DD, Goedde HW, Takagi S, Ishikawa B: Possible protective role against alcoholism for aldehyde dehydrogenase isozyme deficiency in Japan. Lancet 2:827, 1982.

    Article  PubMed  CAS  Google Scholar 

  81. Suwaki H, Ohara H: Alcohol-induced facial flushing and drinking behavior in Japanese men.J Stud Alcohol 46:196–198, 1975.

    Google Scholar 

  82. Ohmori T, Koyama T, Chen C-C, Yeh E-K, Reyes BV, Yamashita I: The role of aldehyde dehydrogenase enzyme variance in alcohol sensitivity, drinking habits formation and the development of alcoholism in Japan, Taiwan and the Philippines. Prog Neuro-psychopharmacol Biol Psychiatry 10:229–235, 1986.

    Article  CAS  Google Scholar 

  83. Impraim C, Wang G, Yoshida A: Structural mutation in a major human aldehyde dehydrogenase gene results in loss of enzyme activity. Am J Hum Genet 34:837–841, 1982.

    PubMed  CAS  Google Scholar 

  84. Yoshida A, Huang I, Ikawa M: Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci USA 81:258–261, 1984.

    Article  PubMed  CAS  Google Scholar 

  85. Hsu LC, Tani K, Fujiyoshi T, Yoshida A: Cloning of cDNA for human aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2. Proc Natl Acad Sci USA 82:3771–3775, 1985.

    Article  PubMed  CAS  Google Scholar 

  86. Hsu LC, Yoshida A, Mohandas T: Chromosomal assignment of the genes for human ALDH1 and ALDH2. Am J Human Genet 38(5):641–648, 1986.

    CAS  Google Scholar 

  87. Schuckit MA: Biological markers: Metabolism and acute reactions to alcohol in sons of alcoholics. Pharmacol Biochem Behav 13:9–16, 1980.

    Article  PubMed  Google Scholar 

  88. Schwitters SY, Johnson RC, McClearn GE, Wilson JR: Alcohol use and the flushing response in different racial ethnic groups.J Stud Alcohol 43:1259–1262, 1982.

    PubMed  CAS  Google Scholar 

  89. Smith M: Genetics of alcohol and aldehyde dehydrogenases. Adv Human Genet 15:249–286, 1986.

    Article  CAS  Google Scholar 

  90. Sheppard JR, Albersheim P, McClearn GE: Aldehyde dehydrogenase and ethanol preference in mice. Biochem Genet 2:205–212, 1968.

    Article  PubMed  CAS  Google Scholar 

  91. Sheppard JR, Albersheim P, McClearn GE: Aldehyde dehydrogenase and ethanol preference in mice.J Biol Chem 245:2876–2882, 1970.

    PubMed  CAS  Google Scholar 

  92. Holmes RS: Genetic variants of enzymes of alcohol and aldehyde metabolism. Alcoholism: Clin Exp Res 9:535–538.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Goldman, D. (1988). Molecular Markers for Linkage of Genetic Loci Contributing to Alcoholism. In: Galanter, M., et al. Recent Developments in Alcoholism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7718-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7718-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7720-1

  • Online ISBN: 978-1-4615-7718-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics