Advertisement

Anticrossing Spectroscopy

  • H.-J. Beyer
  • H. Kleinpoppen
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

About thirty years ago, new ways of investigating the level structure of excited states were opened by the radio-frequency experiment of Lamb and Retherford(1) and by the optical double resonance (ODR) technique(2) suggested by Brossel and Kastler.(3) Together with the level-crossing(4,5,7) and the anticrossing techniques,(6,9) these methods enabled spectroscopists to study the structure of excited states with unprecedented accuracy. Further, they allowed the extraction of information about the strength of internal couplings in atomic states, lifetimes, the influence of external perturbations, and also provided much insight into the interaction between atoms and photons. Of course, all these methods are interrelated, and Figure 1 summarizes some of their characteristics. The ODR and rf techniques make use of changes in the population differences between the two states when a resonant radio-frequency field is applied. Changes in the population are detected as intensity changes in the resonance fluorescence radiation. In a similar way, the populations of the two states tend to equalize in anticrossing experiments when the two states approach each other. In level-crossing experiments, on the other hand, interference takes place between the amplitudes describing the rates for the absorption and the emission of the resonance line at the intersection of the Zeeman levels.

Keywords

Magnetic Field External Perturbation Stark Shift Static Electric Field Electron Impact Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev. 72, 241 (1947);ADSCrossRefGoogle Scholar
  2. 1a.
    W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev. 79, 549 (1950);ADSCrossRefGoogle Scholar
  3. 1b.
    W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev. 81, 222 (1951).ADSCrossRefGoogle Scholar
  4. 2.
    J. Brossel and F. Bitter, Phys. Rev. 86, 308 (1952).ADSCrossRefGoogle Scholar
  5. 3.
    J. Brossel and A. Kastler, C.R. Acad. Sci. 229, 1213 (1949);Google Scholar
  6. 3a.
    A. Kastler,J. Phys. Radium, 11, 255 (1950).CrossRefGoogle Scholar
  7. 4.
    F. D. Colegrove, P. A. Franken, R. R. Lewis, and R. H. Sands, Phys. Rev. Lett. 3, 420 (1959).ADSCrossRefGoogle Scholar
  8. 5.
    P. A. Franken, Phys. Rev. 121, 508 (1961).ADSCrossRefGoogle Scholar
  9. 6.
    T. G. Eck, L. L. Foldy, and H. Wieder, Phys. Rev. Lett. 10, 239 (1963).ADSCrossRefGoogle Scholar
  10. 7.
    K. C. Brog, T. G. Eck, and H. Wieder, Phys. Rev. 153, 91 (1967).ADSCrossRefGoogle Scholar
  11. 8.
    G. W. Series, Phys. Rev. Lett. 11, 13 (1963).ADSCrossRefGoogle Scholar
  12. 9.
    H. Wieder and T. G. Eck, Phys. Rev. 153, 103 (1967).ADSCrossRefGoogle Scholar
  13. 9a.
    See also the discussion given by K. E. Lassila, Phys. Rev. 135, A1218 (1964).ADSCrossRefGoogle Scholar
  14. 10.
    H.-J. Beyer and H. Kleinpoppen,J. Phys. B 4, L129 (1971).ADSCrossRefGoogle Scholar
  15. 11.
    R. T. Robiscoe, Phys. Rev. 138, A22 (1965);ADSCrossRefGoogle Scholar
  16. 11a.
    R. T. Robiscoe, Phys. Rev. 168, 4 (1968).ADSCrossRefGoogle Scholar
  17. 12.
    R. T. Robiscoe and T. W. Shyn, Phys. Rev. Lett. 24, 559 (1970).ADSCrossRefGoogle Scholar
  18. 13.
    B. L. Cosens, Phys. Rev. 173, 49 (1968).ADSCrossRefGoogle Scholar
  19. 14.
    M. Glass-Maujean and J. P. Descoubes, C. R. Acad. Sci. 273, B721 (1971).Google Scholar
  20. 15.
    M. Baumann and A. Eibofner, Phys. Lett. 33A, 409 (1970).ADSGoogle Scholar
  21. 16.
    A. Eibofner, Z. Phys. 249, 58 (1971).ADSCrossRefGoogle Scholar
  22. 17.
    R. Jost and M. Lombardi, Abstracts of the Fifth International Conference on Atomic Physics, Berkeley 1976, pp. 230–231 (1976).Google Scholar
  23. 18.
    H.-J. Beyer, Chapter 12 of this work.Google Scholar
  24. 19.
    M. Glass-Maujean and J. P. Descoubes, Opt. Commun. 4, 345 (1972).ADSCrossRefGoogle Scholar
  25. 20.
    T. G. Eck and R. J. Huff, in Beam Foil Spectroscopy, Ed. S. Bashkin, pp. 193–202, Gordon and Breach, New York (1968);Google Scholar
  26. 20a.
    T. G. Eck and R. J. Huff, Phys. Rev. Lett. 22, 319 (1969).ADSCrossRefGoogle Scholar
  27. 21.
    H.-J. Beyer and H. Kleinpoppen,J. Phys. B 4, L129 (1971);ADSCrossRefGoogle Scholar
  28. 21a.
    H.-J. Beyer and H. Kleinpoppen,J. Phys. B 5, L12 (1972).ADSCrossRefGoogle Scholar
  29. 22.
    H.-J. Beyer, H. Kleinpoppen, and J. M. Woolsey, Phys. Rev. Lett. 28, 263 (1972).ADSCrossRefGoogle Scholar
  30. 23.
    H.-J. Beyer and H. Kleinpoppen,J. Phys. B 8, 2449 (1975).ADSCrossRefGoogle Scholar
  31. 24.
    M. Glass-Maujean, Opt. Commun. 8, 260 (1973).ADSCrossRefGoogle Scholar
  32. 25.
    M. Glass-Maujean, Thesis, Université de Paris (1974).Google Scholar
  33. 26.
    H.-J. Beyer and K.-J. Kollath,J. Phys. B 11, 979 (1978).ADSCrossRefGoogle Scholar
  34. 27.
    T. A. Miller, R. S. Freund, F. Tsai, T. J. Cook, and B. R. Zegarski, Phys. Rev. A 9, 2474 (1974).ADSCrossRefGoogle Scholar
  35. 28.
    T. A. Miller, R. S. Freund, and B. R. Zegarski, Phys. Rev. A 11, 753 (1975).ADSCrossRefGoogle Scholar
  36. 29.
    J. Derouard, R. Jost, M. Lombardi, T. A. Miller, and R. S. Freund, Phys. Rev. A 14, 1025 (1976).ADSCrossRefGoogle Scholar
  37. 30.
    H.-J. Beyer and K.-J. Kollath,J. Phys. B 8, L326 (1975).ADSCrossRefGoogle Scholar
  38. 31.
    H.-J. Beyer and K.-J. Kollath,J. Phys. B 9, L185 (1976).ADSCrossRefGoogle Scholar
  39. 32.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Berlin, Springer-Verlag (1957).zbMATHGoogle Scholar
  40. 33.
    T. N. Chang and R. T. Poe, Phys. Rev. A 10, 1981 (1974);ADSCrossRefGoogle Scholar
  41. 33a.
    T. N. Chang and R. T. Poe, Phys. Rev. A 14, 11 (1976).ADSCrossRefGoogle Scholar
  42. 34.
    B. Budick and J. Snir, Phys. Rev. Lett. 20, 177 (1968).ADSCrossRefGoogle Scholar
  43. 35.
    M. Leventhal, Phys. Lett. 20, 625 (1966).ADSCrossRefGoogle Scholar
  44. 36.
    H.-J. Beyer and K.-J. Kollath,J. Phys. B 10, L5 (1977).ADSCrossRefGoogle Scholar
  45. 37.
    T. A. Miller and R. S. Freund, Phys. Rev. A 4, 81 (1971).ADSCrossRefGoogle Scholar
  46. 38.
    K. B. MacAdam and W. H. Wing, Phys. Rev. A 12, 1464 (1975).ADSCrossRefGoogle Scholar
  47. 39.
    W. C. Martin,J. Phys. Chem. Ref. Data 2, 257 (1973).ADSCrossRefGoogle Scholar
  48. 40.
    R. M. Parish and R. W. Mires, Phys. Rev. A 4, 2145 (1971).ADSCrossRefGoogle Scholar
  49. 41.
    M. J. Seaton, Proc. Phys. Soc. London 88, 815 (1966).ADSCrossRefGoogle Scholar
  50. 42.
    W. E. Lamb, Jr., Phys. Rev. 85, 259 (1952).ADSCrossRefGoogle Scholar
  51. 43.
    K. B. MacAdam and W. H. Wing, Phys. Rev. A 15, 678 (1977).ADSCrossRefGoogle Scholar
  52. 44.
    C. Deutsch, Phys. Rev. A 13, 2311 (1976).MathSciNetADSCrossRefGoogle Scholar
  53. 45.
    H.-J. Beyer, unpublished.Google Scholar
  54. 46.
    M. Baumann, H. Liening, and H. Lindel, Phys. Lett. 59A, 433 (1977).ADSGoogle Scholar
  55. 47.
    A. Adler and Y. Malka,Z. Physik 266, 219 (1974).ADSCrossRefGoogle Scholar
  56. 48.
    K. Fredriksson, H. Lundberg, and S. Svanberg,Z. Physik A 283, 227 (1977).ADSCrossRefGoogle Scholar
  57. 49.
    W. Hanle,Z. Physik 30, 93 (1924).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • H.-J. Beyer
    • 1
  • H. Kleinpoppen
    • 1
  1. 1.Institute of Atomic PhysicsUniversity of StirlingStirlingScotland

Personalised recommendations