Skip to main content

Interaction of Radiation with Matter

  • Chapter
Book cover Principles of Lasers
  • 343 Accesses

Abstract

Let us consider a cavity which is filled with a homogeneous and isotropic dielectric medium. If the walls of the cavity are kept at a constant temperature T, they will continuously emit and receive power in the form of electromagnetic (e.m.) radiation. When the rates of absorption and emission become equal, an equilibrium condition is established at the walls of the cavity as well as at each point of the dielectric. This situation can be described by introducing the energy density ρ, which represents the electromagnetic energy contained in unit volume of the cavity. Since we are dealing with electromagnetic radiation, the energy density can be expressed as a function of the electric field E(t) and magnetic field H(t) according to the well-known formula

$$\rho =\frac{1}{2}\in {{E}^{2}}\left( t \right)+\frac{1}{2}\mu {{H}^{2}}\left( t \right)$$
(2.1)

where ε and μ are, respectively, the dielectric constant and the magnetic permeability of the medium inside the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill Book Co., New York, 1965), Chap. 9.

    Google Scholar 

  2. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (John Wiley and Sons, New York, 1969), Chap. 2, Secs. 2. 1–2. 3.

    Google Scholar 

  3. A. Messiah, Quantum Mechanics (North—Holland Publishing Co., Amsterdam, 1961), Vol. 1, pp. 112, 113.

    Google Scholar 

  4. J. A. Stratton, Electromagnetic Theory, 1st ed. ( McGraw—Hill Book Co., New York, 1941 ), pp. 431–438.

    MATH  Google Scholar 

  5. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics,(John Wiley and Sons, New York, 1969), Chap. 6.

    Google Scholar 

  6. W. Louisell, Radiation and Noise in Quantum Electronics,(McGraw—Hill Book Co., New York, 1964), Chap. 4.

    Google Scholar 

  7. T. Holstein, Phys. Rev. 72, 1212 (1947).

    Article  ADS  MATH  Google Scholar 

  8. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  MATH  Google Scholar 

  9. R. Bonifacio and L. Lugiato, Phys. Rev. A 11, 1507 (1975).

    Article  ADS  Google Scholar 

  10. G. J. Linford and L. W. Hill, Appl. Opt. 13, 1387 (1974).

    Article  ADS  Google Scholar 

  11. Radiationless Transitions,ed. by F. J. Fong (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  12. W. Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill Book Co., New York, 1964), Chap. 5.

    Google Scholar 

  13. W. Heitler, The Quantum Theory of Radiation, 3rd ed. ( Oxford University Press, London, 1953 ), pp. 181–189.

    Google Scholar 

  14. H. G. Kuhn, Atomic Spectra, 2nd ed. ( Longmans, Green and Co., London, 1969 ). Chap. V II.

    Google Scholar 

  15. A. L. Schawlow, in Advances in Quantum Electronics, ed. by J. R. Singer ( Columbia University Press, New York, 1961 ), pp. 50–62.

    Google Scholar 

  16. A. E. Siegman, An Introduction to Lasers and Masers, ( McGraw—Hill Book Co., New York, 1971 ), p. 362.

    Google Scholar 

  17. A. S. Davydov, Quantum Mechanics, ( Pergamon Press, Oxford, 1966 ), pp. 513–520.

    Google Scholar 

  18. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics,(John Wiley and Sons, New York, 1969), pp. 40–41, 60, 62, and Appendix 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Svelto, O., Hanna, D.C. (1982). Interaction of Radiation with Matter. In: Hanna, D.C. (eds) Principles of Lasers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7667-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7667-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7669-3

  • Online ISBN: 978-1-4615-7667-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics